Reintroduction of the Rat for Experimental Subarachnoid Hemorrhage with Accelerated Clot Formation: A Low Mortality Model with Persistent Clots as a Precondition for Studies in Vasospasm

2018 ◽  
Vol 79 (05) ◽  
pp. 424-433 ◽  
Author(s):  
Ulrich Budde ◽  
Ralf Middendorff ◽  
Gerd Manthei ◽  
Andre Kemmling ◽  
Bastian Tiemann ◽  
...  

Background Cerebral vasospasm as a delayed, possibly treatable sequel of subarachnoid hemorrhage (SAH) is a focus of experimental animal research. For this purpose, the rat is not a good model because of the difficulty creating a stable subarachnoid clot that persists > 1 to 2 days and could induce vasospasm. Only in rat models with a high mortality of ∼ 50% or more can SAH and its effects be investigated. Therefore, other animals than rodents are used for investigating the delayed effects of SAH. Only animal studies addressing the acute effects of SAH use rats. Objective We designed a model that allows intensive clot formation combined with low mortality to facilitate studies on the delayed effects of experimental SAH, for example, delayed vasospasm or other alterations of vessels. Methods After in vitro acceleration of the clotting process in the rats' blood by tissue factor and preliminary in vivo testing, we induced a SAH by injecting blood together with tissue factor in 22 rats. We analyzed clot expansion, length of clot persistence, chronic alterations, and histologic changes. Results The injection of blood supplemented by tissue factor led to persistent voluminous blood clots in the subarachnoid space close to the large arteries. Despite the pronounced SAH, all animals survived, allowing investigation of delayed SAH effects. All animals killed within the first 7 days after surgery had extensive clots; in some animals, the clots remained until postoperative day 12. During further clot degradation connective tissue appeared, possibly as a precursor of SAH-related late hydrocephalus. Conclusion The injection of blood together with tissue factor significantly improves SAH induction in the rat model. This rat model allows studying delayed SAH effects as found in humans.

1994 ◽  
Vol 14 (6) ◽  
pp. 1096-1099 ◽  
Author(s):  
Liisa Näveri ◽  
Christer Strömberg ◽  
Juan M. Saavedra

The effect of angiotensin (ANG) IV on CBF after experimental subarachnoid hemorrhage (SAH) was studied in rats using laser–Doppler flowmetry. ANG IV (1 μg/kg/min i.v.) or saline treatments were started 20 min after SAH. ANG IV increased CBF (from 45 to 84% of baseline) by 60 min. In the saline group, CBF remained low (51%). Pretreatment with the specific ANG II antagonist Sar1, Ile8-ANG II did not antagonize ANG IV. Determination of nitric oxide synthase (NOS) activity in vitro or inhibition of NOS in vivo did not support a role for NO in the action of ANG IV.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


1992 ◽  
Vol 67 (03) ◽  
pp. 366-370 ◽  
Author(s):  
Katsuhiko Nawa ◽  
Teru Itani ◽  
Mayumi Ono ◽  
Katsu-ichi Sakano ◽  
Yasumasa Marumoto ◽  
...  

SummaryPrevious studies on recombinant human soluble thrombomodulin (rsTM) from Chinese hamster ovary cells revealed that rsTM was expressed as two proteins that differed functionally in vitro due to the presence (rsTMp) or absence (rsTMa) of chondroitin-4-sulfate. The current study evaluates the in vivo behavior of rsTM in rats and in a rat model of tissue factor-induced disseminated intravascular coagulation (DIC). rsTMp was more potent than rsTMa for prolongation of the activated partial thromboplastin time (APTT) and their in vivo half-lives determined by ELISA were 20 min for rsTMp and 5.0 h for rsTMa. Injection of a tissue factor suspension (5 mg/kg) resulted in DIC as judged by decreased platelet counts and fibrinogen concentrations, prolonged APTT, and increased fibrin and fibrinogen degradation products (FDP) levels. A bolus injection of either rsTM (0.2 mg/kg) 1 min before induction of DIC essentially neutralized effects on platelets, fibrinogen, and FDP levels, and had only a moderate effect on APTT prolongation. The dose of anticoagulant to inhibit the drop in platelet counts by 50% (ED50) was 0.2 mg/kg rsTMa, 0.07 mg/kg rsTMp, and 7 U/ kg heparin. The effect of increasing concentrations of rsTM and heparin on bleeding times were compared in experiments involving incision of the rat tail. Doubling of the bleeding times occurred at 5 mg/kg rsTMa, 3 mg/kg rsTMp or 90 U/kg heparin. These values represent a 25-fold increase over the ED50 for rsTMa, 43-fold for rsTMp and 13-fold for heparin. These results suggest that rsTMp is a potent anticoagulant to inhibit the platelet reduction when injected prior to the induction of DIC in rats.


1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


Author(s):  
Hyoung-Jin Moon ◽  
Won Lee ◽  
Ji-Soo Kim ◽  
Eun-Jung Yang ◽  
Hema Sundaram

Abstract Background Aspiration testing before filler injection is controversial. Some believe that aspiration can help prevent inadvertent intravascular injection, while others cite false-negative results and question its value given that the needle position always changes somewhat during injection procedures. Objectives To test the relation of false-negative results to the viscosity of the material within the needle lumen and determine whether a less viscous material within the needle lumen could decrease the incidence of false-negative results. Methods In vitro aspiration tests were performed using 30-G and 27-G needle gauges, two cross-linked hyaluronic acid fillers, normal saline bags pressurized at 140 and 10 mmHg to mimic human arterial and venous pressures, and three needle lumen conditions (normal saline, air, and filler). Testing was repeated three times under each study condition (72 tests in total). For in vivo correlation, aspiration tests were performed on femoral arteries and central auricular veins in three rabbits (4–5 aspirations per site, 48 tests in total). Results In vitro and in vivo testing using 30-G needles containing filler both showed false-negative results on aspiration testing. In vitro and in vivo testing using needles containing saline or air showed positive findings. Conclusions False-negative results from aspiration testing may be reduced by pre-filling the needle lumen with saline rather than a filler. The pressurized system may help overcome challenges of animal models with intravascular pressures significantly different from those of humans. The adaptability of this system to mimic various vessel pressures may facilitate physiologically relevant studies of vascular complications.


Sign in / Sign up

Export Citation Format

Share Document