CEREBRAL THROMBOLYSIS WITH INTRAVENOUSLY ADMINISTERED RECOMBINANT LOW- MOLECULAR-WEIGHT-UROKINASE AND RECOMBINANT PRO-UROKINASE IN A DOG MODEL

1987 ◽  
Author(s):  
M Hirschberg ◽  
A Manoutchei ◽  
B Klemens ◽  
B Hofferberth

There is increasing evidence that recombinant prourokinase (rec-pro-UK) is a proenzyme which in vivo systems may induce activation of the fibrinolytic system with a better thrombus selectivity than that obtained with active urokinase.In order to study the effects of rec-pro-UK and low-molecular-weight-urokinase (LMW-UK) on acute stroke, a thrombus was induced in the middle cerebral artery (MCA) of anesthetized mongrel dogs (n=12). Occlusion of the vessel was confirmed by angiography. Following a 1 hour period of MCA occlusion, in six animals LMW-UK was administered intravenously at a dose of 4000 lU/kg/min. Angiographically confirmed thrombolysis occurred after 30 minutes. Thrombolysis by LMW-UK was accompanied by bleeding from all surgical wounds and consumption of plasminogen, alpha-2-antiplasmin and fibrinogen. Rec-pro-UK was administered to six other dogs in a LMW-UK-equivalent dosis. Thrombolysis was achieved after 30 minutes in all six cases without inducing a systemic lytic state. Neither in the LMW-UK-group nor in the group treated with rec-pro-UK intracerebral bleeding complications were observed on post mortem examination.Our findings indicate that intravenous administration of rec-pro-UK - because of the lack of systemic side-effects - may be a safe way of rapid thrombolysis of occluded cerebral arteries in acute stroke.

2006 ◽  
Vol 96 (12) ◽  
pp. 816-821 ◽  
Author(s):  
Robert Linhardt ◽  
John Francis ◽  
Ali Amirkhosravi ◽  
Shaker Mousa

SummaryLow-molecular-weight heparins (LMWH) exhibit potent anticoagulant efficacy via their plasmatic effects on thrombin and factor Xa. These agents are also effective in releasing endothelial tissue factor pathway inhibitor (TFPI),the natural inhibitor of tissue factor, and exhibit significant anti-metastatic effects in experimental animal models. However, the potential for bleeding complications has slowed down the more widespread adoption of LMWH therapy in cancer patients. In this study, the effect of a non-anticoagulant form of LMWH (NA-LMWH) on experimental lung metastasis and tumor cell-induced platelet aggregation in vivo was compared to the LMWH enoxaparin. Using the B16 melanoma mouse model of metastasis, subcutaneous (s.c.) injection of NA-LMWH or enoxaparin (10 mg/kg), three hours before intravenous (i.v.) injection of metastatic melanoma cells, followed by daily doses for 14 days, reduced lung tumor formation by 70% (P<0.001). I.v. injection of tumor cells resulted in a significant (50–62%, P<0.01) fall in platelet counts. Pre-injection (i.v.) of enoxaparin completely abolished the tumor cell-induced thrombocytopenia, whereas NA-LMWH had no effect. Four hours after a single s.c. dose, enoxaparin but not NALMWH prolonged the clotting time three-fold and delayed the time to clot initiation more than 10-fold as measured by a Sonoclot analyzer and by thromboelastography, respectively. Enoxaparin but not NA-LMWH demonstrated a significant anticoagulant effect in mice. Both NA-LMWH and enoxaparin caused similar TFPI release from endothelial cells in vitro.These data provide evidence to support the potential of NA-LMWH as an anti-metastatic agent without any significant impact on coagulation.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 265-265
Author(s):  
Shaker A Mousa ◽  
Noureldien Hassan Elsayed Darwish ◽  
Vandhana Muralidharan-Chari ◽  
Mohamed Qari ◽  
Chen Qiukan ◽  
...  

Abstract The pathogenesis of Sickle Cell Disease (SCD) comprises a complex interplay of factors associated with vascular endothelial activation, intense inflammation, and increased sickle cell adhesion. Microvascular occlusion in SCD is initiated by adhesion of sickle red blood cells (RBCs) to the endothelium, leading to acute painful vasoocclusive crisis (VOC) and clinical morbidity. Current treatment strategies remain sub-optimal and are limited by significant side effects. The inherent complexity of SCD makes it unlikely that a single therapeutic strategy will be universally beneficial. We have previously shown that the low molecular weight heparin (LMWH) tinzaparin significantly shortened both duration of VOC crisis and hospitalizations by ~40%, and resulted in statistically significant and rapid reduction of pain). However, safety concerns associated with the narrow therapeutic index (bleeding risks) of LMWH are a major barrier to dose escalation/optimization of treatments. We have developed a novel sulfated non-anticoagulant LMWH, named S-NACH, with an extensive range of bioactivities that would constitute a multi-modal approach to management of SCD. We generated and significantly optimized S-NACH for VOC to: 1) exert its beneficial activities without causing hemostatic (bleeding) side effects that are associated with the clinical use of LMWHs; and 2) incorporate an additional, potent direct anti-sickling property besides its anti-selectin and anti-inflammatory activities. We conducted in vitro and in vivo investigations on the efficacy of S-NACH on the biophysical properties of RBCs. For the in vitro study, 21 subjects comprising 12 SCD patients with hemoglobin (Hb) SS on hydroxurea and 9 normal subjects with Hb AA of both sexes and of different ages were randomly recruited. To assess the effects of S-NACH on the sickling, the SS blood samples were incubated under hypoxia (2% O2 gas, balance N2 gas) at 37°C for 1.5 h, in the absence (control) or presence of 1, 5, or 10 ug/mL of S-NACH or LMWH. For the in vivo study, we obtained pre-treatment samples from Townes' SCD mice (n=6 mice/treatment group) and treated the mice subcutaneously with PBS or 30-100 mg/kg S-NACH. Two hours after treatment, blood samples were evaluated for the percentage of sickled cells in pre- and post-administration samples using Leishman's stain and wet smears. Incubation with S-NACH in vitro under hypoxia showed a dose-dependent, significant inhibition of sickling (up to 80%) in samples from all subjects while LMWH showed no anti-sickling effect. S-NACH had no effect on the osmotic fragility of both AA and SS RBCs. Importantly, we observed a 40-50% decrease in levels of circulating sickled cells in treated SCD mice, an effect that persisted for up to 6 h. Our in vitro studies show that the direct anti-sickling effect is partly due to dose-dependent modification of Hb S to the high-affinity adduct form and the corresponding increase in oxygen affinity, as demonstrated with cation HPLC and oxygen equilibrium analyses. Summarily, our previous findings showed the efficacy of S-NACH as anti-adhesive and anti-inflammatory in SCD, and our current results demonstrate the direct anti-polymerization action of S-NACH on sickle RBCs. Our data document for the first time the supplemental direct anti-sickling effects of a novel S-NACH derivative, suggesting a rational mode of action for these effects and make a compelling case for future studies. Planned detailed structural studies of our S-NACH derivatives complexed with Hb are expected to further illuminate the anti-sickling properties. Our novel Nanoformulated S-NACH for subcutaneous and oral administration would facilitate broader investigation of this promising molecule with multiple modes of action in animal models, with relatively quick translation to successful studies in individuals with SCD. Disclosures Mousa: Vascular Vision Pharmaceuticals Co.: Patents & Royalties: Patent Holder.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


1981 ◽  
Vol 46 (03) ◽  
pp. 612-616 ◽  
Author(s):  
U Schmitz-Huebner ◽  
L Balleisen ◽  
F Asbeck ◽  
J van de Loo

SummaryHigh and low molecular weight heparin fractions obtained by gel filtration chromatography of sodium mucosal heparin were injected subcutaneously into six healthy volunteers and compared with the unfractionated substance in a cross-over trial. Equal doses of 5,000 U were administered twice daily over a period of three days and heparin activity was repeatedly controlled before and 2, 4, 8 hrs after injection by means of the APTT, the anti-Xa clotting test and a chromogenic substrate assay. In addition, the in vivo effect of subcutaneously administered fractionated heparin on platelet function was examined on three of the volunteers. The results show that s.c. injections of the low molecular weight fraction induced markedly higher anti-Xa activity than injections of the other preparations. At the same time, APTT results did not significantly differ. Unfractionated heparin and the high molecular weight fraction enhanced ADP-induced platelet aggregation and collagen-mediated MDA production, while the low molecular weight fraction hardly affected these assays, but potently inhibited thrombin-induced MDA production. All heparin preparations stimulated the release of platelet Factor 4 in plasma. During the three-day treatment periods, no side-effects and no significant changes in the response to heparin injections were detected.


1997 ◽  
Vol 77 (01) ◽  
pp. 057-061 ◽  
Author(s):  
Dennis W T Nilsen ◽  
Lasse Gøransson ◽  
Alf-Inge Larsen ◽  
Øyvind Hetland ◽  
Peter Kierulf

SummaryOne hundred patients were included in a randomized open trial to assess the systemic factor Xa (FXa) and thrombin inhibitory effect as well as the safety profile of low molecular weight heparin (LMWH) given subcutaneously in conjunction with streptokinase (SK) in patients with acute myocardial infarction (MI). The treatment was initiated prior to SK, followed by repeated injections every 12 h for 7 days, using a dose of 150 anti-Xa units per kg body weight. The control group received unfractionated heparin (UFH) 12,500 IU subcutaneously every 12 h for 7 days, initiated 4 h after start of SK infusion. All patients received acetylsalicylic acid (ASA) initiated prior to SK.Serial blood samples were collected prior to and during the first 24 h after initiation of SK infusion for determination of prothrombin fragment 1+2 (Fl+2), thrombin-antithrombin III (TAT) complexes, fibrinopeptide A (FPA) and cardiac enzymes. Bleeding complications and adverse events were carefully accounted for.Infarct characteristics, as judged by creatine kinase MB isoenzyme (CK-MB) and cardiac troponin T (cTnT), were similar in both groups of patients.A comparable transient increase in Fl+2, TAT and FPA was noted irrespective of heparin regimen. Increased anti-Xa activity in patients given LMWH prior to thrombolytic treatment had no impact on indices of systemic thrombin activation.The incidence of major bleedings was significantly higher in patients receiving LMWH as compared to patients receiving UFH. However, the occurrence of bleedings was modified after reduction of the initial LMWH dose to 100 anti-Xa units per kg body weight.In conclusion, systemic FXa- and thrombin activity following SK-infusion in patients with acute MI was uninfluenced by conjunctive LMWH treatment.


1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


2003 ◽  
Vol 71 (11) ◽  
pp. 6648-6652 ◽  
Author(s):  
Steven Giles ◽  
Charles Czuprynski

ABSTRACT In this study we found that serum inhibitory activity against Blastomyces dermatitidis was principally mediated by albumin. This was confirmed in experiments using albumin from several mammalian species. Analbuminemic rat serum did not inhibit B. dermatitidis growth in vivo; however, the addition of albumin restored inhibitory activity. Inhibitory activity does not require albumin domain III and appears to involve binding of a low-molecular-weight yeast-derived growth factor.


Sign in / Sign up

Export Citation Format

Share Document