DIPYRIDAMOLE ALONE OR WITH LOW DOSE ASPIRIN DOES NOT PREVENT ACUTE PLATELET THROMBUS FORMATION IN STENOSED DOG CORONARY ARTERIES

1987 ◽  
Author(s):  
J D Folts ◽  
S R Smith

Dipyridamole (Dip) is reputed to inhibit (I) platelet aggregation (PA) and acute thrombus formation (ATF) by two mechanisms including inhibiting 1.) platelet (Pt) phosphodiesterase, 2.) adenosine (A) reuptake by red cells, which should raise plasma A. Both effects should raise Pt cyclic AMP and thus be a potent platelet inhibitor (PI). Because aspirin (AS) inhibits Pt thromboxane A2 production, a synergistic (S) PI effect for ASA and Dip given together has been postulated and used in clinical trials but this S has never been shown to I ATP in any in vivo model, which reasonably mimics human arterial stenosis. We have shown that ATF followed by embolization, occurs periodically in mechanically stenosed (MS) monkey and rabbit carotid arteries, and dog (D) and pig coronary arteries (CA), causing cyclical reductions in coronary blood flow (CRF) (measured with EMF probes) and periodic acute ischemia, and that these CRF can be abolished with a variety of PI including 3.0 mg/kg of ASA. To determine if there is a S effect between ASA and Dip, in open chest D, Dip was given, 2.0 mg/kg IV to D with a MS circumflex CA and having 14±5 CRF’s per hour, due to periodic ATF; and simultaneously flow measured in an unstenosed normal LAD CA. The frequency and size of CRF’s were not changed by Dip, although ABP decreased 21±9 mm Hg and blood flow in the unstenosed LAD increased 259±47%. A low dose of ASA, 1.0 mg/kg, which by itself diminishes but does not abolish CRF’s in this model was given IV 10 min. after Dip and CRF’s continued unchanged. When a second dose of ASA 1.0 mg/kg was given IV to reach the minimum effective dose of ASA in this model, CRF were abolished in all D. Thus Dip was not effective alone or in combination with low dose ASA to I CRF in this model which simulates the patient with stenosed CA. The majority of clinical trials that show inhibition of ATF, used ASA and Dip together without 3 separate patient groups on Dip alone, ASA alone and ASA plus Dip. The widespread use of Dip with ASA to prevent ATF in man needs to be reevaluated.

1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


1997 ◽  
Vol 78 (04) ◽  
pp. 1242-1248 ◽  
Author(s):  
David E Newby ◽  
Robert A Wright ◽  
Christopher A Ludlam ◽  
Keith A A Fox ◽  
Nicholas A Boon ◽  
...  

SummaryThe effects on blood flow and plasma fibrinolytic and coagulation parameters of intraarterial substance P, an endothelium dependent vasodilator, and sodium nitroprusside, a control endothelium independent vasodilator, were studied in the human forearm circulation. At subsystemic locally active doses, both substance P (2-8 pmol/min) and sodium nitroprusside (2-8 μg/min) caused dose-dependent vasodilatation (p <0.001 for both) without affecting plasma concentrations of PAI-1, von Willebrand factor antigen or factor VIII:C activity. Substance P caused local increases in t-PA antigen and activity (p <0.001) in the infused arm while sodium nitroprusside did not. At higher doses, substance P increased blood flow and t-PA concentrations in the noninfused arm. We conclude that brief, locally active and subsystemic infusions of intraarterial substance P cause a rapid and substantial local release of t-PA which appear to act via a flow and nitric oxide independent mechanism. This model should provide a useful and selective method of assessing the in vivo capacity of the forearm endothelium to release t-PA acutely.


1993 ◽  
Vol 21 (2) ◽  
pp. 502-510 ◽  
Author(s):  
Judith K. Mickelson ◽  
Paul T. Hoff ◽  
Jonathon W. Homeister ◽  
Joseph C. Fantone ◽  
Benedict R. Lucchesi

2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Hua Chen ◽  
Dongxia Liu ◽  
Lan Ge ◽  
Tao Wang ◽  
Zhenzhen Ma ◽  
...  

AbstractCatestatin (CTS), a catecholamine-release inhibitory peptide, exerts pleiotropic cardiac protective effects. Pulmonary embolism caused by deep vein thrombosis involving vascular dysfunction. The present study aims to investigate the effects of CTS on thrombus formation that may inhibit the development of pulmonary embolism and its potential pathway. Acute pulmonary embolism (APE) model was developed as an in vivo model. The effects of CTS on mice with APE were examined. Human pulmonary artery endothelial cells (HPAECs) were pretreated with CTS before thrombin stimulation, and endothelial inflammation and underlying mechanisms were evaluated in vitro. That plasma CTS level was decreased in APE mice, while the number of platelets was significantly increased. The decreased circulating CTS level negatively associated with the number of platelets. CTS administration increased the survival rate of APE mice and protected against microvascular thrombosis in lung. APE-induced the increase in platelets number and plasma von Willebrand factor (VWF) were inhibited by CTS. Platelets from CTS-treated APE mice showed impaired agonist-induced platelets aggregation and spreading. CTS also ameliorated APE-induced the systemic inflammatory response. In in vivo study, thrombin-induced the increase in inflammation, TLR-4 expression and p38 phosphorylation were abrogated by CTS in HPAECs. Furthermore, TLR-4 overexpression inhibited the effect of CTS on VWF release and inflammation in HPAECs. Collectively, CTS increases thrombus resolution by attenuating endothelial inflammation at partially via inhibiting TLR-4-p38 pathway. The present study may provide a novel approach for anti-thrombosis.


Author(s):  
Chander Sadasivan ◽  
Baruch B. Lieber ◽  
Liliana Cesar ◽  
Jaehoon Seong ◽  
Ajay K. Wakhloo

Subarachnoid hemorrhagic stroke is a devastating illness with a 30-day mortality rate of 45% and is mostly caused due to the rupture of an intracranial aneurysm. Although these aneurysms are currently treated surgically by clipping, or, endovascularly by coiling and stent-assisted coiling, the feasibility of successfully treating aneurysms solely by the placement of an intravascular flow-diverting mesh across the aneurysm neck was established more than a decade ago [1]. Flow divertors disrupt the momentum exchange between the parent artery and aneurysm and significantly reduce intraaneurysmal hydrodynamic vorticity. The resultant flow stasis promotes thrombus formation within the aneurysm sac, which eventually matures into fibrotic tissue, leading to the exclusion of the aneurysm from the circulation. With the increased use of stents in the intracranial circulation, cases where coiling is not feasible, or is staged as a secondary procedure, are providing clinical evidence of the successful treatment of aneurysms with stents alone [2,3]. Such reports are sporadic and, moreover, the devices used are not designed to be flow divertors. Methodological evidence of the performance of appropriately designed flow divertors in treating cerebral aneurysms is currently unavailable.


2006 ◽  
Vol 95 (02) ◽  
pp. 354-361 ◽  
Author(s):  
Oliver Berg ◽  
Axel Heimann ◽  
Thomas Münzel ◽  
Christian-Friedrich Vahl ◽  
Oliver Kempski ◽  
...  

SummaryApplication of clopidogrel before percutaneous coronary intervention in patients with acute coronary syndrome reduces the risk of cardiac events. Clopidogrel administration before surgery increases bleeding complications after CABG. Therefore, the antithrombotic effect of the low-dose combination of clopidogrel and aspirin was investigated in an in vivo pig model of coronary artery thrombus formation with cyclic flow reductions. The platelet inhibitory effect was determined by platelet aggregation and CFR, according to the methodology described by Folts. CFR were initiated by endothelial damage and placement of a constrictor around the LAD. 30 min after CFR were established, clopidogrel (0.1 mg/kg or5 mg/kg), aspirin (1 mg/kg or 7 mg/kg) or LDC (0.1 mg/kg clopidogrel and 1 mg/kg aspirin) were administered orally. CFR-frequency was determined for further 240 min. CFR-frequency (CFR/30 min) was significantly reduced at 60 min in response to aspirin (7 mg/kg, −48%, p<0.05), and at 120 min in response to clopidogrel (5 mg/kg, −65%, p<0.05) but not at low doses of either compound. In contrast, LDC of clopidogrel (0.1 mg/kg) plus aspirin (1 mg/kg) resulted in a complete and rapid abrogation of CFR at 90 min (−70%, p<0.05). Furthermore, LDC led to reduction of platelet aggregation when CFR-frequency was already significantly decreased. In contrast, high dose groups presented a significant reduction of platelet aggregation prior to CFR-frequency decrease. Low dose combination of clopidogrel plus aspirin demonstrates a potent over additive anti-thrombotic effect in vivo with a significant reduction in thrombus formation early after drug application. The effect occurs before inhibition of platelet aggregation is detectable.


Cytokine ◽  
2013 ◽  
Vol 63 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Philipp Lichte ◽  
Jan-Sebastian Grigoleit ◽  
Eva Maria Steiner ◽  
Jennifer S. Kullmann ◽  
Manfred Schedlowski ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3361-3361
Author(s):  
Riitta Lassila ◽  
Annukka Jouppila ◽  
Ulla M Marzec ◽  
Stephen R Hanson

Abstract Abstract 3361 We have developed a semi-synthetic antithrombotic heparin complex, APL001, to mimic mast cell-derived natural heparin proteoglycans (HepPG). HepPG attenuate platelet-collagen interactions under blood flow by inhibiting VWF- and GPIIb/IIIa -mediated platelet aggregation. In addition, rat-derived HepPG arrest platelet thrombus growth on collagen surfaces or at vascular injury sites, both in vitro and in vivo (Lassila et al.ATVB 1997, Kauhanen et al. ATVB 2000, Olsson et al. Thromb Haemost 2002). Our objective was to study the inhibitory capacity of APL001 for preventing human platelet aggregation in vitro and acute thrombosis in a baboon model in vivo. The effects of unfractionated heparin (UFH) and APL001 were compared in relevant coagulation assays (APTT, PT, thrombin time, anti-FXa activity, fibrinogen, FVIII:C and VWF activity (VWF:RCo) and antigen). Additionally, agonist-induced (collagen, ristocetin and ADP) platelet aggregation in citrate or hirudin-anticoagulated whole blood (Multiplate®) (n=10 healthy subjects), and platelet function analysis (PFA100®) in citrated platelet rich plasma (PRP) were assessed. In a well-established baboon thrombosis model a collagen-coated PTFE graft (length 2 cm, lumen 4 mm) was placed in an arterio-venous shunt. Prior to blood contact the thrombogenic surface was treated for 10 min with UFH or APL001 (both at 4 mg/mL). Thrombus formation was initiated by exposing the surface to blood flow (100 mL/min, shear rate 265−1), and the deposition of 111-In-labeled platelets and of fibrin was quantified continuously over 1h. Fibrin thrombus accumulation was assessed from the incorporation of circulating 125-I-fibrinogen. In the heparin-relevant coagulation tests APL001 was comparable or 20–30% more potent than UFH while FVIII, fibrinogen and VWF variables remained unaltered. In contrast to UFH, APL001 (300 μg/mL) consistently inhibited collagen- and ristocetin-induced platelet aggregation, whereas UFH had only a modest effect in comparison with PBS control (Table). ADP-induced aggregation was unaffected. Comparable results were observed in the PRP aggregation assay. PFA100 testing also demonstrated inhibitory effects. In the in vivo thrombosis model (n=4) APL001 reduced platelet deposition on collagen (vs. the results with UFH) by 34% (p=0.01), while platelet accumulation in distal propagated thrombus was reduced by 61% (p=0.16). APL001-treated surfaces accumulated 45% less fibrin than the UFH-treated surfaces (p=0.008). In conclusion, when compared with UFH APL001 inhibited both collagen- and ristocetin-induced platelet aggregation in human blood, while anticoagulant properties were comparable. In the absence of systemic antithrombotic drugs, exposure of APL001 to a highly thrombogenic collagen surface arrested thrombus formation in an in vivo baboon model. This finding suggests that locally administered APL001 alone, due to its dual antiplatelet and anticoagulant effects, may limit the growth and size of thrombus and thereby prevent subsequent thrombo-occlusion.TableAnticoagulantInhibition-% of platelet aggregation ± SDConc. 300 μg/mLnColl (3.2 μg/mL)Ristocetin (0.77 mg/mL)ADP (6.4 μM)CitrateAPL0011033 ± 1543 ± 166 ± 24UFH1011 ± 1323 ± 153 ± 7p value0.0030.0100.700HirudinAPL0011032 ± 1043 ± 178 ± 10UFH108 ± 1116 ± 166 ± 9p value0.0000.0020.600 Disclosures: Lassila: Aplagon: Chief Scientific Advisor.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4083-4092 ◽  
Author(s):  
Frédéric Adam ◽  
Alexandre Kauskot ◽  
Paquita Nurden ◽  
Eric Sulpice ◽  
Marc F. Hoylaerts ◽  
...  

Abstract The role of c-Jun NH2-terminal kinase 1 (JNK1) in hemostasis and thrombosis remains unclear. We show here, with JNK1-deficient (JNK1−/−) mice, that JNK1 plays an important role in platelet biology and thrombus formation. In tail-bleeding assays, JNK1−/− mice exhibited longer bleeding times than wild-type mice (396 ± 39 seconds vs 245 ± 32 seconds). We also carried out in vitro whole-blood perfusion assays on a collagen matrix under arterial shear conditions. Thrombus formation was significantly reduced for JNK1−/− platelets (51%). In an in vivo model of thrombosis induced by photochemical injury to cecum vessels, occlusion times were 4.3 times longer in JNK1−/− arterioles than in wild-type arterioles. Moreover, in vitro studies carried out in platelet aggregation conditions demonstrated that, at low doses of agonists, platelet secretion was impaired in JNK1−/− platelets, leading to altered integrin αIIbβ3 activation and reduced platelet aggregation, via a mechanism involving protein kinase C. JNK1 thus appears to be essential for platelet secretion in vitro, consistent with its role in thrombus growth in vivo. Finally, we showed that ERK2 and another isoform of JNK affect platelet aggregation through 2 pathways, one dependent and another independent of JNK1.


Sign in / Sign up

Export Citation Format

Share Document