Platelet JNK1 is involved in secretion and thrombus formation

Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4083-4092 ◽  
Author(s):  
Frédéric Adam ◽  
Alexandre Kauskot ◽  
Paquita Nurden ◽  
Eric Sulpice ◽  
Marc F. Hoylaerts ◽  
...  

Abstract The role of c-Jun NH2-terminal kinase 1 (JNK1) in hemostasis and thrombosis remains unclear. We show here, with JNK1-deficient (JNK1−/−) mice, that JNK1 plays an important role in platelet biology and thrombus formation. In tail-bleeding assays, JNK1−/− mice exhibited longer bleeding times than wild-type mice (396 ± 39 seconds vs 245 ± 32 seconds). We also carried out in vitro whole-blood perfusion assays on a collagen matrix under arterial shear conditions. Thrombus formation was significantly reduced for JNK1−/− platelets (51%). In an in vivo model of thrombosis induced by photochemical injury to cecum vessels, occlusion times were 4.3 times longer in JNK1−/− arterioles than in wild-type arterioles. Moreover, in vitro studies carried out in platelet aggregation conditions demonstrated that, at low doses of agonists, platelet secretion was impaired in JNK1−/− platelets, leading to altered integrin αIIbβ3 activation and reduced platelet aggregation, via a mechanism involving protein kinase C. JNK1 thus appears to be essential for platelet secretion in vitro, consistent with its role in thrombus growth in vivo. Finally, we showed that ERK2 and another isoform of JNK affect platelet aggregation through 2 pathways, one dependent and another independent of JNK1.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 394-394
Author(s):  
Lurong Lian ◽  
Yanfeng Wang ◽  
Xinsheng Chen ◽  
Tami Bach ◽  
Laurie Lenox ◽  
...  

Abstract Pleckstrin is a 40 kDa phosphoprotein containing amino- and carboxyl-terminal Pleckstrin Homology (PH) domains separated by a DEP domain. Pleckstrin’s expression is restricted to platelets and leukocytes, and represents approximately 1% of total cellular protein within these cells. Following platelet and leukocyte activation, PKC rapidly phosphorylates pleckstrin inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Heterologously expressed phosphorylated pleckstrin colocalized with integrins and induces cytoskeletal reorganization. To better define the role of pleckstrin in vivo, we introduced a loss-of-function mutation into the murine pleckstrin gene. Pleckstrin-null mice were present in offspring at a frequency consistent with a Mendelian inheritance pattern. Adult pleckstrin −/− mice had 32% lower platelet counts than their littermates, but exhibited no spontaneous hemorrhage. Given the role of PKC and phospholipid second messengers on cytoskeletal dynamics, and our observations of pleckstrin overexpression in cell lines, we analyzed whether loss of pleckstrin affected cell spreading. Pleckstrin −/− platelets spread extremely poorly upon immobilized fibrinogen, and rarely exhibited broad membrane extensions. Granulocytes from pleckstrin −/− mice also have a spreading defect, as well as impaired ability to generate reactive oxygen species in the response to TNFα. Knockout B-cells, CD4-T-cells, and CD8-T-cells all migrated approximately 30% as efficiently as wild type cells in response to a gradient of SDF-1α in a transwell assay. These data suggest that loss of pleckstrin causes cytoskeletal defects in cells of multiple hematopoietic lineages. Analyzing whether this caused a functional defect, we found that pleckstrin −/− platelets exhibited a 22% dense- and 24% alpha-granule exocytosis defect, and a 35% defect in thrombin-induced calcium entry. In spite of these abnormalities, platelets changed shape and aggregated normally after stimulation with thrombin, ADP, or collagen in vitro. Pleckstrin knockout platelets did have a markedly impaired aggregation response following exposure to the PKC stimulant, PMA. This suggested that pleckstrin is a critical effector for PKC-mediated aggregation, but another pathway is able to compensate for this loss of pleckstrin following agonist stimulation. We reasoned that the alternative pathway might also utilize PIP2-dependent second messengers. Since the phosphorylation of PIP2 by PI3K generates second messengers that also contribute to platelet aggregation, we tested whether PI3K compensated for the loss of pleckstrin. We found that the PI3K inhibitor, LY294002 profoundly impaired the aggregation of pleckstrin knockout platelets in response to stimulation of the thrombin receptor. In contrast, the PI3K inhibitor minimally affected wild type platelets. This demonstrates that second messengers generated by PI3K are able to compensate for loss of pleckstrin. This also demonstrates that thrombin-induced platelet aggregation can be mediated by one of two parallel pathways, one involving PKC and pleckstrin, and the other involving PI3K. Together, our results show that pleckstrin is an essential component of PKC-mediated platelet activation and signals directed to the cytoskeleton.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2388-2388
Author(s):  
Sebastian Jonas Saur ◽  
Melanie Märklin ◽  
Manuela Ganser ◽  
Kyle Hoehn ◽  
James E David ◽  
...  

Abstract Megakaryopoiesis is controlled by a variety of hematopoietic growth factors and cytokines in order to maintain physiological levels of circulating platelets. Thrombopoietin (TPO) signalling via its receptor c-Mpl is a key regulator of megakaryopoiesis driving megakaryocyte differentiation, promoting endomitosis and proplatelet formation. Therefore TPO/c-Mpl signalling needs to be tightly regulated to maintain physiological megakaryopoiesis. One of the most effective mechanisms to permanently disable activated signalling proteins is by targeted degradation via lysosomes or proteasomes. Previous studies have identified c-Cbl as an E3 ligase responsible for the ubiquitination of c-Mpl in cell lines. In this study, we investigated the mechanisms of TPO-mediated c-Mpl degradation in primary mouse cells. In order to determine the potential role of c-Cbl in murine megakaryopoiesis we used a conditional PF4-Cre c-Cbl knockout (ko) mouse model to specifically delete c-Cbl in the megakaryocytic lineage. Megakaryocytes were generated in vitro by culturing bone marrow from WT and PF4-Cre/c-Cbl-floxed (c-Cbl ko) lines for 72 hrs in the presence of rmTPO. C-Cbl ko mice showed significant bone marrow megakaryocyte hyperplasia, however megakaryocyte numbers in the spleen remained unchanged. Platelets counts were significantly elevated as compared to control mice (1.2 x106 vs. 1.7x106 p=0.0001) and in addition, the platelets from the c-Cbl ko mouse strain were of significantly smaller size (43 vs. 38 fL, p=0.0022). Using a method of in vivo double labelling of platelets, we were able to simultaneously follow the survival of both the entire population of platelets and new platelets which were generated during the last 24 hours. There were more new platelets produced within a 24 h period in the c-Cbl ko mice although the half-life of platelets was similar in the both cohorts. Although c-Cbl ko mice exhibited thrombocytosis, they showed a severe defect in thrombus formation using an in vivo thrombus formation model with Fe3Cl. TPO plasma levels, known to be inversely regulated by circulating platelet numbers, were surprisingly increased (250 vs. 420 pg/ml, p=0.005) in the c-Cbl ko mice. There was no difference in liver mRNA levels in the two cohorts. We therefore looked at c-Mpl protein and mRNA expression in megakaryocytes and found c-Cbl ko mice to express more c-Mpl compared with wild type controls. Surprisingly, we found c-Mpl surface expression to be reduced and internalization of the receptor significantly impaired following TPO stimulation in c-Cbl ko mice. Incubating platelets in vitro with TPO for 2 hours to evaluate the TPO uptake capacity of platelets, we found c-Cbl ko platelets to show a severe uptake defect compared with wild type control platelets. Taken together, we have successfully ablated c-Cbl specifically from the megakaryocyte lineage and demonstrated that this has profound effects on platelet counts and size. In addition, we showed that c-Cbl ablation leads to reduced c-Mpl surface expression and impaired internalization, which culminates in increased TPO plasma levels causing increased megakaryopoiesis in the c-Cbl ko mice. In summary, our data enhance our understanding of the regulation of TPO signalling and the physiological role of c-Cbl in the megakaryocytic lineage. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 98 (11) ◽  
pp. 1072-1080 ◽  
Author(s):  
Miroslava Pozgajova ◽  
Judith Cosemans ◽  
Imke Munnix ◽  
Beate Eckes ◽  
Bernhard Nieswandt ◽  
...  

SummaryPlatelets stably interact with collagen via glycoprotein (GP)VI and α2β1 integrin. With α2-null mice, we investigated the role of α2β1 in thrombus formation and stability in vivo and in vitro. Using a FeCl3-induced thrombosis model, in arteries from α2-null mice smaller thrombi were formed with more embolization compared to vessels from wild-type mice. Aspirin treatment of wild-type mice causes similar effects, while the thromboxane A2 analogue U46619 was borderline effective in suppressing the embolisation in α2-null mice. In vitro, perfusion of α2-null blood over collagen resulted in formation of thrombi that were smaller and looser in appearance, regardless of the presence or absence of coagulation. Aspirin treatment or blockage of thromboxane receptors provoked embolus formation in wildtype blood, while U46619 normalized thrombus formation in blood from α2-null mice. We conclude that integrin α2β1 plays a role in stabilizing murine thrombi, likely by enhancing GPVI activation and thromboxane A2 release. The increased embolization in α2-null mice may argue against the use of α2β1 integrin inhibitors for antithrombotic therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 370-370
Author(s):  
Freda H. Passam ◽  
Lin Lin ◽  
Mingdong Huang ◽  
Jonathan M. Gibbins ◽  
Bruce Furie ◽  
...  

Abstract Abstract 370 Protein disulfide isomerase is required for thrombus formation in various in vivo models of thrombosis. Another member of the thiol isomerase family, endoplasmic reticulum protein 5 (ERp5), is released from activated platelets and co-immunoprecipitates with beta 3 integrin (Jordan et al, 2005). We further investigated the association of ERp5 with the platelet fibrinogen receptor alpha IIb beta 3 and the significance of ERp5 release in thrombus formation in vivo. Recombinant purified ERp5 was labeled with Alexa 488 and used in direct binding assays to CHO cells expressing wild type (WT) alpha IIb beta 3, CHO cells expressing mutant alpha IIb beta 3 (containing an Asp119Tyr substitution in the beta 3 subunit) and to control CHO cells. The mutant alpha IIb beta 3 does not bind fibrinogen. ERp5 bound to CHO cells expressing wild type (WT) alpha IIb beta 3 in a dose-dependent manner but did not bind to CHO cells expressing mutant alpha IIb beta 3 or to control CHO cells. The relative increase in the geomean of Alexa 488-labeled ERp5 binding to 0.5 ×106 WT alpha IIb beta 3 CHO cells over that bound to control CHO cells was 20, 45 and 85% for ERp5 concentrations of 80, 160 and 400 nM respectively. Binding of ERp5 (160 nM) to WT alpha IIb beta 3 expressing CHO cells was further increased by 75% when the integrin was activated with 2 mM Mn2+ compared to non-activated WT alpha IIb beta 3 CHO cells. A role for ERp5 in thrombus formation was studied in the laser injury model of thrombosis in mouse cremaster arterioles using a rabbit polyclonal anti-ERp5 antibody, immunoaffinity purified against recombinant ERp5. This antibody detected ERp5 in the releasate of thrombin-activated mouse platelets in vitro by Western blot and on the surface of thrombin-activated mouse platelets by flow cytometry. Dylight 649-labeled anti-CD42b was infused into the mouse circulation to detect platelet accumulation and Alexa 488-labeled anti-ERp5 antibody at 0.05 ug/g, a dose that does not inhibit thrombus formation, was infused to detect ERp5. The fluorescent anti-ERp5 signal detected at the thrombus site was compared to the signal produced by a non-specific IgG labeled with Alexa 488 infused into a control mouse. Anti-ERp5 fluorescence was detected in the thrombus with kinetics that followed platelet accumulation whereas there was minimal signal from the control IgG. We examined whether higher doses of anti-ERp5 affect thrombus formation. Platelet and fibrin accumulation were detected using fluorescently labeled anti-CD42b antibody and monoclonal anti-fibrin-specific antibody respectively before or after the injection of unlabeled anti-ERp5 antibody or pre-immune IgG at 2.5 ug/g. Platelet and fibrin accumulation, expressed as area under the curve of the median integrated fluorescence over time, was obtained from 14 thrombi in 6 mice formed before infusion of antibody, 18 thrombi in 2 mice formed after infusion of control IgG and 29 thrombi in 3 mice formed after infusion of anti-ERp5. Anti-ERp5 infusion caused a 70% decrease in the deposition of platelets and a 62% decrease in fibrin accumulation compared to infusion of control antibody (p<0.01). There was no difference in platelet and fibrin accumulation before infusion of antibody and after infusion of control antibody. These results provide evidence for a role of a second thiol isomerase, ERp5, in thrombus formation, a function which may be mediated through its association with alpha IIb beta 3. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul White ◽  
Samuel F. Haysom ◽  
Matthew G. Iadanza ◽  
Anna J. Higgins ◽  
Jonathan M. Machin ◽  
...  

AbstractThe folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


Sign in / Sign up

Export Citation Format

Share Document