Cloning of the cDNA Encoding Human Platelet CD36: Comparison to PCR Amplified Fragments of Monocyte, Endothelial and HEL Cells

1993 ◽  
Vol 70 (03) ◽  
pp. 500-505 ◽  
Author(s):  
B Wyler ◽  
L Daviet ◽  
H Bortkiewicz ◽  
J-C Bordet ◽  
J L McGregor

SummaryGlycoprotein CD36, also known as GPIIIb or GPIV, is a major platelet glycoprotein that bears the newly identified Naka alloantigen. The aim of this study was to clone platelet CD36 and investigate other forms of CD36-cDNA present in monocytes, endothelial and HEL cells. RNA from above mentioned cells were reverse transcribed (RT), using specific primers for CD36, and amplified by the polymerase chain reaction (PCR) technique. Sequencing the different amplified platelet derived cDNA fragments, spanning the whole coding and flanking regions, showed the near identity between platelet and CD36-placenta cDNA. Platelet CD36-cDNA cross-hybridized, in Southern blots, with RT-PCR amplified cDNA originating from monocytes, endothelial and HEL cells. However, monocytes showed a RT-PCR amplified cDNA fragment (561 bp) that was present in platelets and placenta but not on endothelial on HEL-cells. Northern blot analysis of platelet RNA hybridized with placenta CD36 indicated the presence of a major (1.95 kb) and a minor (0.95 kb) transcript. The 1.95 kb transcript was the only one observed on Northern blots of monocytes, endothelial and HEL cells. These results indicate that the structure of CD36 expressed in platelets is similar, with the exception of the 3’ flanking region, to that of placenta. Differences in apparent molecular weight between CD36 and CD36-like glycoproteins may be due to post-translational modifications.

2001 ◽  
Vol 56 (9-10) ◽  
pp. 814-819 ◽  
Author(s):  
Ei-ichiro Fukusaki ◽  
Takashi Oishi ◽  
Hozumi Tanaka ◽  
Shin-ichiro Kajiyama ◽  
Akio Kobayashi

Abstract The differential display reverse transcriptional polymerase chain reaction (DD-RT-PCR) was used to hunt for cDNA fragments specifically expressed by taxol treatment of HeLa cells. Forty-eight cDNA clones were differentially displayed through the experiments. The cDNA fragments obtained were separately spotted onto glass slides to prepare a tailor-made DNA chip. The gene expression pattern of differentially displayed cDNA fragments were checked by DNA microarray analysis.


1994 ◽  
Vol 267 (3) ◽  
pp. F497-F503 ◽  
Author(s):  
J. C. Pelayo ◽  
M. A. Mobilia ◽  
S. Tjio ◽  
R. Singh ◽  
J. M. Nakamoto ◽  
...  

The objective of this study was to develop a technique to identify and dissect segments of the rat renal microcirculation and to apply reverse transcription (RT) to specific mRNAs with subsequent amplification of the cDNA by polymerase chain reaction (PCR) to evaluate gene expression. To circumvent the difficulty associated with visualizing specific microvessels, we intrarenally infused blue latex microparticles, 1-5 microns in diameter, with subsequent identification and microdissection of specific segments of the renal microvasculature under stereomicroscopy. To demonstrate its utility, we assessed expression of mRNAs encoding fibronectin and renin. As expected, mRNA encoding fibronectin was localized along the renal microcirculation, and mRNA encoding renin was primarily present in afferent arterioles and interlobular arteries. Identity of the amplified cDNA fragments was verified by sequencing. This perfusion-microdissection technique coupled to RT-PCR should be useful in the evaluation of gene expression along the renal microvasculature. It may also allow bridging of the gap between analysis of gene expression of rare mRNA species by in situ hybridization and physiology of the renal microcirculation.


1992 ◽  
Vol 288 (1) ◽  
pp. 285-290 ◽  
Author(s):  
R G H J Maatman ◽  
E M A van de Westerlo ◽  
T H M S M van Kuppevelt ◽  
J H Veerkamp

The cDNAs of two types of fatty acid-binding protein (FABP) present in human kidney, previously described as types A and B, were isolated using reverse transcriptase-PCR (RT-PCR) with human kidney mRNA and various sets of primers. The cDNA fragments were cloned and sequenced. Renal FABP type A and B cDNAs appeared to be completely identical to human liver- and heart-type FABP cDNAs respectively. In the second part of this study we demonstrated the presence of liver-type FABP in rat kidney by chromatography, e.l.i.s.a. and immunocytochemistry. The ratio and cellular distribution of the two FABP types varies markedly in human and rat kidney. Using RT-PCR we were also able to prepare and identify liver- and heart-type FABP cDNAs with mRNA from both male and female rat kidney.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

1993 ◽  
Vol 69 (05) ◽  
pp. 485-489 ◽  
Author(s):  
Isabelle Djaffar ◽  
Didier Vilette ◽  
Dominique Pidard ◽  
Jean-Luc Wautier ◽  
Jean-Philippe Rosa

SummaryThe human platelet antigen (HPA) 3 system is expressed on GPIIb, one subunit of GPIIb-IIIa, the platelet fibrinogen receptor. It was recently shown that HPA-3 was associated with an Ile843/Ser polymorphism. To investigate further HPA-3 determinant structure, we localized an HPA-3a determinant, recognized by the alloantiserum Leka, within the last 29 amino acids of GPIIbα. This region encompasses the polymorphic Ile843, which, as expected, is substituted into Ser in Leka-negative individuals, as shown by DNA sequence after polymerase chain reaction on platelet RNA. In addition, contribution of glycosylation to the determinant structure was demonstrated since the Leka antigenicity was strongly decreased after specifically removing nonterminal O-linked sugars, but not terminal sialic acids. We have thus refined the localization of an HPA-3a determinant within the last 29 amino acids, including Ile843, of GPIIb heavy chain, and shown that the Leka HPA-3a determinant is dependent, in part, upon the serine-linked carbohydrates adjacent to Ile/Ser843.


1994 ◽  
Vol 72 (05) ◽  
pp. 762-769 ◽  
Author(s):  
Toshiro Takafuta ◽  
Kingo Fujirmura ◽  
Hironori Kawano ◽  
Masaaki Noda ◽  
Tetsuro Fujimoto ◽  
...  

SummaryGlycoprotein V (GPV) is a platelet membrane protein with a molecular weight of 82 kD, and one of the leucine rich glycoproteins (LRG). By reverse transcription-polymerase chain reaction (RT-PCR), GPV cDNA was amplified from mRNA of platelets and megakaryocytic cell lines. However, since there are few reports indicating whether GPV protein is expressed in megakaryocytes as a lineage and maturation specific protein, we studied the GPV expression at the protein level by using a novel monoclonal antibody (1D9) recognizing GPV. Flow cytometric and immunohistochemical analysis indicated that GPV was detected on the surface and in the cytoplasm of only the megakaryocytes in bone marrow aspirates. In a megakaryocytic cell line UT-7, GPV antigen increased after treatment with phorbol-12-myri-state-13-acetate (PMA). These data indicate that only megakaryocytes specifically express the GPV protein among hematopoietic cells and that the expression of GPV increases with differentiation of the megakaryocyte as GPIb-IX complex.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 371-374 ◽  
Author(s):  
R. Gajardo ◽  
R. M. Pintó ◽  
A. Bosch

A reverse transcription polymerase chain reaction (RT-PCR) assay is described that has been developed for the detection and serotyping of group A rotavirus in stool specimens and concentrated and non-concentrated sewage specimens.


2020 ◽  
pp. 175717742097679
Author(s):  
Kordo Saeed ◽  
Emanuela Pelosi ◽  
Nitin Mahobia ◽  
Nicola White ◽  
Christopher Labdon ◽  
...  

Background: We report an outbreak of SARS coronavirus-2 (SARS-CoV-2) infection among healthcare workers (HCW) in an NHS elective healthcare facility. Methodology: A narrative chronological account of events after declaring an outbreak of SARS-CoV-2 among HCWs. As part of the investigations, HCWs were offered testing during the outbreak. These were: (1) screening by real-time reverse transcriptase polymerase chain reaction (RT- PCR) to detect a current infection; and (2) serum samples to determine seroprevalence. Results: Over 180 HCWs were tested by real-time RT-PCR for SARS-CoV-2 infection. The rate of infection was 15.2% (23.7% for clinical or directly patient-facing HCWs vs. 4.8% in non-clinical non-patient-facing HCWs). Of the infected HCWs, 57% were asymptomatic. Seroprevalence (SARS-CoV-2 IgG) among HCWs was 13%. It was challenging to establish an exact source for the outbreak. The importance of education, training, social distancing and infection prevention practices were emphasised. Additionally, avoidance of unnecessary transfer of patients and minimising cross-site working for staff and early escalation were highlighted. Establishing mass and regular screening for HCWs are also crucial to enabling the best care for patients while maintaining the wellbeing of staff. Conclusion: To our knowledge, this is the first UK outbreak report among HCWs and we hope to have highlighted some key issues and learnings that can be considered by other NHS staff and HCWs globally when dealing with such a task in future.


2020 ◽  
Author(s):  
Thomas Tschoellitsch ◽  
Martin Dünser ◽  
Carl Böck ◽  
Karin Schwarzbauer ◽  
Jens Meier

Abstract Objective The diagnosis of COVID-19 is based on the detection of SARS-CoV-2 in respiratory secretions, blood, or stool. Currently, reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used method to test for SARS-CoV-2. Methods In this retrospective cohort analysis, we evaluated whether machine learning could exclude SARS-CoV-2 infection using routinely available laboratory values. A Random Forests algorithm with 1353 unique features was trained to predict the RT-PCR results. Results Out of 12,848 patients undergoing SARS-CoV-2 testing, routine blood tests were simultaneously performed in 1528 patients. The machine learning model could predict SARS-CoV-2 test results with an accuracy of 86% and an area under the receiver operating characteristic curve of 0.90. Conclusion Machine learning methods can reliably predict a negative SARS-CoV-2 RT-PCR test result using standard blood tests.


Sign in / Sign up

Export Citation Format

Share Document