scholarly journals Neonatal Functional and Structural Connectivity Are Associated with Cerebral Palsy at Two Years of Age

2019 ◽  
Vol 37 (02) ◽  
pp. 137-145
Author(s):  
Stephanie L. Merhar ◽  
Elveda Gozdas ◽  
Jean A. Tkach ◽  
Nehal A. Parikh ◽  
Beth M. Kline-Fath ◽  
...  

Objective The accuracy of structural magnetic resonance imaging (MRI) to predict later cerebral palsy (CP) in newborns with perinatal brain injury is variable. Diffusion tensor imaging (DTI) and task-based functional MRI (fMRI) show promise as predictive tools. We hypothesized that infants who later developed CP would have reduced structural and functional connectivity as compared with those without CP. Study Design We performed DTI and fMRI using a passive motor task at 40 to 48 weeks' postmenstrual age in 12 infants with perinatal brain injury. CP was diagnosed at age 2 using a standardized examination. Results Five infants had CP at 2 years of age, and seven did not have CP. Tract-based spatial statistics showed a widespread reduction of fractional anisotropy (FA) in almost all white matter tracts in the CP group. Using the median FA value in the corticospinal tracts as a cutoff, FA was 100% sensitive and 86% specific to predict CP compared with a sensitivity of 60 to 80% and a specificity of 71% for structural MRI. During fMRI, the CP group had reduced functional connectivity from the right supplemental motor area as compared with the non-CP group. Conclusion DTI and fMRI obtained soon after birth are potential biomarkers to predict CP in newborns with perinatal brain injury.

2017 ◽  
Author(s):  
Annika C. Linke ◽  
Conor Wild ◽  
Leire Zubiaurre-Elorza ◽  
Charlotte Herzmann ◽  
Hester Duffy ◽  
...  

AbstractObjectiveFunctional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. Methods: This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants (n=65, included in final analyses: n=53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 minutes of fcMRI acquired during natural sleep at term-equivalent age.ResultsDisruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course.ConclusionfcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S293-S293
Author(s):  
Ana Pinheiro ◽  
Sylvain Bouix ◽  
Nikos Makris ◽  
Michael Schwartze ◽  
Martha Shenton ◽  
...  

Abstract Background Auditory verbal hallucinations (AVH) have been explained in the context of the forward model, giving the cerebellum a prominent role. However, research utilizing multiple neuroimaging modalities has rendered results on the specificity of cerebellar contribution to AVH unclear. Methods To examine the reliability and regional specificity of cerebellar changes in AVH, a systematic search of electronic databases through October 2019 was conducted to identify neuroimaging studies of the cerebellum in psychotic patients or nonclinical participants reporting AVH, focusing on structural MRI, diffusion tensor imaging, and resting state functional connectivity studies. Twenty-two studies were selected, including 892 participants with AVH (792 psychotic patients; 100 at-risk subjects) and 775 healthy controls. Activation likelihood estimate analysis (ALE) examined the reported coordinates for reduced volume, fractional anisotropy (FA) or connectivity (control participants > participants with AVH) and increased volume, FA or connectivity (participants with AVH > control participants). The consistency of cerebellar changes and their relationship with sociodemographic and clinical measures were meta-analyzed. Results The ALE meta-analysis revealed changes in both anterior and posterior cerebellar lobes, with opposite patterns: whereas decreased volume or connectivity was identified in the right anterior cerebellum (lobule IV/V), increased volume or connectivity was identified in the bilateral posterior cerebellum (Crus I and II). A random-effects model with small sample corrections identified consistent changes in both volume and functional connectivity of the cerebellum in participants with AVH (g = .84; SE = .24, 95% CI [.33, 1.34]), which were enhanced in Crus I (g = 1.52, SE = .28, p = .006, 95% CI [.73, 2.31]) but not moderated by age, sex, medication, or illness duration. Discussion The ALE meta-analysis confirms cerebellar structural and connectivity changes in psychotic and nonclinical participants reporting AVH. These changes may contribute to AVH due to altered sensory feedback and consequently to erratic prediction as described by the forward model. The current findings also indicate that not all cerebellar regions are equally affected by AVH: the most pronounced changes were observed in Crus I. Specifically, altered communication between Crus I and neocortical network nodes, including the prefrontal cortex, may contribute to ineffective cognitive control in AVH, leading to external misattributions of auditory feedback and a reduced sense of control over events in the environment.


2018 ◽  
Author(s):  
Christiane Oedekoven ◽  
James L. Keidel ◽  
Stuart Anderson ◽  
Angus Nisbet ◽  
Chris Bird

Despite their severely impaired episodic memory, individuals with amnesia are able to comprehend ongoing events. Online representations of a current event are thought to be supported by a network of regions centred on the posterior midline cortex (PMC). By contrast, episodic memory is widely believed to be supported by interactions between the hippocampus and these cortical regions. In this MRI study, we investigated the encoding and retrieval of lifelike events (video clips) in a patient with severe amnesia likely resulting from a stroke to the right thalamus, and a group of 20 age-matched controls. Structural MRI revealed grey matter reductions in left hippocampus and left thalamus in comparison to controls. We first characterised the regions activated in the controls while they watched and retrieved the videos. There were no differences in activation between the patient and controls in any of the regions. We then identified a widespread network of brain regions, including the hippocampus, that were functionally connected with the PMC in controls. However, in the patient there was a specific reduction in functional connectivity between the PMC and a region of left hippocampus when both watching and attempting to retrieve the videos. A follow up analysis revealed that in controls the functional connectivity between these regions when watching the videos was correlated with memory performance. Taken together, these findings support the view that the interactions between the PMC and the hippocampus enable the encoding and retrieval of multimodal representations of the contents of an event.


2021 ◽  
Author(s):  
David Pascucci ◽  
Maria Rubega ◽  
Joan Rue-Queralt ◽  
Sebastien Tourbier ◽  
Patric Hagmann ◽  
...  

The dynamic repertoire of functional brain networks is constrained by the underlying topology of structural connections: the lack of a direct structural link between two brain regions prevents direct functional interactions. Despite the intrinsic relationship between structural (SC) and functional connectivity (FC), integrative and multimodal approaches to combine the two remain limited, especially for electrophysiological data. In the present work, we propose a new linear adaptive filter for estimating dynamic and directed FC using structural connectivity information as priors. We tested the filter in rat epicranial recordings and human event-related EEG data, using SC priors from a meta-analysis of tracer studies and diffusion tensor imaging metrics, respectively. Our results show that SC priors increase the resilience of FC estimates to noise perturbation while promoting sparser networks under biologically plausible constraints. The proposed filter provides intrinsic protection against SC-related false negatives, as well as robustness against false positives, representing a valuable new method for multimodal imaging and dynamic FC analysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Zhang ◽  
Rosa Cortese ◽  
Nicola De Stefano ◽  
Antonio Giorgio

Cognitive impairment (CI) occurs in 43 to 70% of multiple sclerosis (MS) patients at both early and later disease stages. Cognitive domains typically involved in MS include attention, information processing speed, memory, and executive control. The growing use of advanced magnetic resonance imaging (MRI) techniques is furthering our understanding on the altered structural connectivity (SC) and functional connectivity (FC) substrates of CI in MS. Regarding SC, different diffusion tensor imaging (DTI) measures (e.g., fractional anisotropy, diffusivities) along tractography-derived white matter (WM) tracts showed relevance toward CI. Novel diffusion MRI techniques, including diffusion kurtosis imaging, diffusion spectrum imaging, high angular resolution diffusion imaging, and neurite orientation dispersion and density imaging, showed more pathological specificity compared to the traditional DTI but require longer scan time and mathematical complexities for their interpretation. As for FC, task-based functional MRI (fMRI) has been traditionally used in MS to brain mapping the neural activity during various cognitive tasks. Analysis methods of resting fMRI (seed-based, independent component analysis, graph analysis) have been applied to uncover the functional substrates of CI in MS by revealing adaptive or maladaptive mechanisms of functional reorganization. The relevance for CI in MS of SC–FC relationships, reflecting common pathogenic mechanisms in WM and gray matter, has been recently explored by novel MRI analysis methods. This review summarizes recent advances on MRI techniques of SC and FC and their potential to provide a deeper understanding of the pathological substrates of CI in MS.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuma Kitase ◽  
Eric M. Chin ◽  
Sindhu Ramachandra ◽  
Christopher Burkhardt ◽  
Nethra K. Madurai ◽  
...  

Abstract Background Chorioamnionitis (CHORIO) is a principal risk factor for preterm birth and is the most common pathological abnormality found in the placentae of preterm infants. CHORIO has a multitude of effects on the maternal–placental–fetal axis including profound inflammation. Cumulatively, these changes trigger injury in the developing immune and central nervous systems, thereby increasing susceptibility to chronic sequelae later in life. Despite this and reports of neural–immune changes in children with cerebral palsy, the extent and chronicity of the peripheral immune and neuroinflammatory changes secondary to CHORIO has not been fully characterized. Methods We examined the persistence and time course of peripheral immune hyper-reactivity in an established and translational model of perinatal brain injury (PBI) secondary to CHORIO. Pregnant Sprague–Dawley rats underwent laparotomy on embryonic day 18 (E18, preterm equivalent). Uterine arteries were occluded for 60 min, followed by intra-amniotic injection of lipopolysaccharide (LPS). Serum and peripheral blood mononuclear cells (PBMCs) were collected at young adult (postnatal day P60) and middle-aged equivalents (P120). Serum and PBMCs secretome chemokines and cytokines were assayed using multiplex electrochemiluminescent immunoassay. Multiparameter flow cytometry was performed to interrogate immune cell populations. Results Serum levels of interleukin-1β (IL-1β), IL-5, IL-6, C–X–C Motif Chemokine Ligand 1 (CXCL1), tumor necrosis factor-α (TNF-α), and C–C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were significantly higher in CHORIO animals compared to sham controls at P60. Notably, CHORIO PBMCs were primed. Specifically, they were hyper-reactive and secreted more inflammatory mediators both at baseline and when stimulated in vitro. While serum levels of cytokines normalized by P120, PBMCs remained primed, and hyper-reactive with a robust pro-inflammatory secretome concomitant with a persistent change in multiple T cell populations in CHORIO animals. Conclusions The data indicate that an in utero inflammatory insult leads to neural–immune changes that persist through adulthood, thereby conferring vulnerability to brain and immune system injury throughout the lifespan. This unique molecular and cellular immune signature including sustained peripheral immune hyper-reactivity (SPIHR) and immune cell priming may be a viable biomarker of altered inflammatory responses following in utero insults and advances our understanding of the neuroinflammatory cascade that leads to perinatal brain injury and later neurodevelopmental disorders, including cerebral palsy.


2021 ◽  
Author(s):  
Zhenzhen Jia ◽  
Guanya Li ◽  
Yang Hu ◽  
Hao Li ◽  
Wenchao Zhang ◽  
...  

Abstract Functional constipation (FCon) is one of the common functional gastrointestinal disorders (FGID). Previous studies reported alterations in cortical morphometry as well as changes in white matter (WM) fiber tracts and thalamo-limbic/parietal structural connectivity (SC). However, whether patients with FCon are implicated in changes in gray matter (GM) volume and associated SC remains unclear. Voxel-based morphometry (VBM) was first employed to examine differences in GM volume between 48 patients with FCon and 52 healthy controls (HC). Diffusion tensor imaging (DTI) with probabilistic tractography analysis was then employed to explore alterations in SC of these regions. Compared with the HC, patients with FCon showed decreased GM volumes in the right middle frontal gyrus (MFG_R), left insula (INS_L), and anterior cingulate cortex (ACC, PFWE < 0.05) which had a negative correlation with abdominal symptoms and difficulty of defecation respectively. Seed-based SC showed patients with FCon had decreased fractional anisotropy (FA) of bilateral INS-ACC, bilateral ACC-MFG, bilateral INS-MFG, increased axial diffusivity (AD) of bilateral ACC-MFG, and decreased radial diffusivity (RD) of bilateral INS-ACC, bilateral ACC-MFG tracts. FA of the right INS-ACC tract had a negative correlation with difficulty of defecation and AD of the ACC-left MFG tract had a negative correlation with stool symptoms. These findings reflect patients with FCon are implicated in changes in GM volumes and corresponding SC in brain regions within the salience network.


2016 ◽  
Vol 46 (12) ◽  
pp. 2485-2499 ◽  
Author(s):  
N. M. L. Wong ◽  
H.-L. Liu ◽  
C. Lin ◽  
C.-M. Huang ◽  
Y.-Y. Wai ◽  
...  

BackgroundLate-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD.MethodThe current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants’ perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli.ResultsStructurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area.ConclusionsPerceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.


2016 ◽  
Vol 22 (7) ◽  
pp. 705-716 ◽  
Author(s):  
Arianna Rigon ◽  
Michelle W. Voss ◽  
Lyn S. Turkstra ◽  
Bilge Mutlu ◽  
Melissa C. Duff

AbstractObjectives:Although it has been well documented that traumatic brain injury (TBI) can result in communication impairment, little work to date has examined the relationship between social communication skills and structural brain integrity in patients with TBI. The aim of the current study was to investigate the association between self- and other-perceived communication problems and white matter integrity in patients with mild to severe TBI.Methods:Forty-four individuals (TBI=24) and people with whom they frequently communicate, as well as demographically matched normal healthy comparisons (NC) and their frequent communication partners, were administered, respectively, the La-Trobe Communication Questionnaire Self form (LCQ-SELF) and Other form (LCQ-OTHER). In addition, diffusion tensor imaging data were collected, and fractional anisotropy (FA) measures were extracted for each lobe in both hemispheres.Results:Within the TBI group, but not within the NC group, participants who were perceived by their close others as having more communication problems had lower FA in the left frontal and temporal lobes (p<.01), but not in other brain regions.Conclusions:Frontotemporal white matter microstructural integrity is associated with social communication abilities in adults with TBI. This finding contributes to our understanding of the mechanisms leading to communication impairment following TBI and can inform the development of new neuromodulation therapies as well as diagnostic tools. (JINS, 2016,22, 705–716)


Sign in / Sign up

Export Citation Format

Share Document