scholarly journals The Effect of Irradiance on the Degree of Conversion and Volumetric Polymerization Shrinkage of Different Bulk-Fill Resin-Based Composites: An In Vitro Study

Author(s):  
Abrar N. Bin Nooh ◽  
Hend Al Nahedh ◽  
Mohammad AlRefeai ◽  
Fahad Alkhudhairy

Abstract Objective The influence of different light-emitting diode (LED) curing light intensities on the degree of conversion (DC) and volumetric polymerization shrinkage (VPS) of bulk-fill resin-based composite (RBC) restorative materials was evaluated. Materials and Methods Twenty-four specimens of each RBC material (Filtek one bulk-fill posterior, Reveal HD Bulk, Tetric N-Ceram, and Filtek Z350) were prepared. The RBCs were shaped in molds and cured using an LED curing light unit at high-intensity (1,200 mW/cm2) for 20 seconds and low-intensity (650 mW/cm2) for 40 seconds Fourier-transform infrared (FTIR) spectroscopy was used to determine the DC and microcomputed tomography was used to evaluate VPS. Data were analyzed using one- and two-way ANOVA, independent t-test, and Tukey’s and Scheffe’s post hoc multiple comparison tests. Results With high-intensity curing light, Reveal HD showed the highest DC (85.689 ± 6.811%) and Tetric N-Ceram the lowest (52.60 ± 9.38%). There was no statistical difference in VPS when using high- or low-intensity curing light. The highest VPS was observed for Reveal HD (2.834–3.193%); there was no statistical difference (p > 0.05) among the other RBCs. Conclusion Curing light intensities do not significantly influence the VPS of RBC materials. Reveal HD bulk cured with high-intensity light had the highest DC.

2012 ◽  
Vol 37 (2) ◽  
pp. 205-210 ◽  
Author(s):  
H El-Shamy ◽  
MH Saber ◽  
CE Dörfer ◽  
W El-Badrawy ◽  
BAC Loomans

SUMMARY Background Proximal contact tightness of class II resin composite restorations is influenced by a myriad of factors. Previous studies investigated the role of matrix band type and thickness, consistency of resin composite, and technique of placement. However, the effect of volumetric shrinkage of resin and intensity of curing light has yet to be determined. Thus, the aim of this study was to identify the influence of these factors on the proximal contact tightness when restoring class II cavity preparations in vitro. Methods Sixty artificial molars were restored with either a low-shrinkage (Filtek Silorane, 3M ESPE) or a conventional (Z100, 3M ESPE) composite and polymerized with low-intensity (Smartlite IQ2, Dentsply) or high-intensity light curing units (DemiTM, Kerr). Proximal contact tightness was measured using the Tooth Pressure Meter. Data were statistically analyzed using one-way analysis of variance and Tukey post hoc test. Results Use of low-shrinkage composite (Filtek Silorane) resulted in significantly tighter proximal contacts compared to the use of conventional composite (Z100) when cured with the same polymerization unit (p<0.001). Moreover, the low-intensity curing unit (IQ2) resulted in significantly tighter contacts than the high-intensity unit when material is constant (p<0.001). Conclusions Low-shrinkage resin composite and low curing light intensity is associated with tighter proximal contact values.


2007 ◽  
Vol 8 (2) ◽  
pp. 80-88 ◽  
Author(s):  
Yonca Korkmaz ◽  
Nuray Attar

Abstract Aim The disadvantages of light cured composite resin materials with respect to microleakage are predominantly a result of polymerization shrinkage upon curing. It has been shown curing methods play a significant role in polymerization shrinkage of light-cured composite resins. The purpose of this study was to investigate the effect of light-emitting diode (LED) light curing units (LCUs) compared with a halogen LCU on microleakage of three different flowable composites using self-etch adhesives. Methods and Materials A total of 63 extracted human premolars were prepared with standardized Class V cavity preparations on the buccal and lingual surfaces of each tooth. The occusal margin of the cavities was located on the enamel and the gingival margin was on dentin. Teeth were randomly assigned to three groups of 21 teeth each as follows: Group 1: Adper Prompt L-Pop + Filtek Flow (3M ESPE); Group 2: AdheSE + Tetric Flow (Ivoclar, Vivadent); and Group 3: Clearfil Protect Bond + Clearfil Protect Liner F (Kuraray Medical Inc.). All the groups were subdivided into three groups according to the curing lights used (n=7). Two LED LCUs, Elipar FreeLight and Elipar FreeLight 2 (3M ESPE), and one halogen-based LCU, Hilux Expert (Benlioglu), were used. All teeth were then immersed in 0.5% basic fuchsin dye solution for 24 hours after thermocycling (500 cycles; between 5°C to 55°C). The teeth then were longitudinally sectioned and observed under a stereomicroscope (40X magnification) by two examiners. The degree of dye penetration was recorded separately for enamel and dentin. Data were analyzed with the Kruskal-Wallis and Mann-Whitney tests with the Bonferroni correction. Results No statistically significant differences in microleakage were observed between groups either on enamel or dentin (p>0.05). Conclusion With the limitation of this in vitro study, the differences in microleakage between LCUs used were not statistically significantly different. Elipar Free Light 2 reduces curing time which can be considered as an advantage. Citation Attar N, Korkmaz Y. Effect of Two Light-emitting Diode (LED) and One Halogen Curing Light on the Microleakage of Class V Flowable Composite Restorations. J Contemp Dent Pract 2007 February;(8)2:080-088.


2017 ◽  
Vol 42 (1) ◽  
pp. 82-89 ◽  
Author(s):  
P Yu ◽  
AUJ Yap ◽  
XY Wang

SUMMARY This study evaluated the degree of conversion (DC) and polymerization shrinkage (PS) of contemporary bulk-fill resin-based composites (RBCs) including giomer materials. Two giomer bulk-fill (Beautifil Bulk Restorative [BBR], Beautifil Bulk Flowable [BBF]), two nongiomer bulk-fill (Tetric N-Ceram Bulk-fill [TNB], Smart Dentin Replacement [SDR]), and three conventional non–bulk-fill (Beautifil II [BT], Beautifil Flow Plus [BF], Tetric N-Ceram [TN]) RBCs were selected for the study. To evaluate the DC, disc-shaped specimens of 5-mm diameter and 2-mm, 4-mm, and 6-mm thickness were fabricated using customized Teflon molds. The molds were bulk filled with the various RBCs and cured for 20 seconds using a light-emitting diode curing light with an irradiance of 950 mW/cm2. The DC (n=3) was determined by attenuated total reflectance Fourier transform infrared spectroscopy by computing the spectra of cured and uncured specimens. PS (n=3) was measured with the Acuvol volumetric shrinkage analyzer by calculating specimen volumes before and after light curing. The mean DC for the various materials ranged from 46.03% to 69.86%, 45.94% to 69.38%, and 30.65% to 67.85% for 2 mm, 4 mm, and 6 mm, respectively. For all depths, SDR had the highest DC. While no significant difference in DC was observed between depths of 2 mm and 4 mm for the bulk-fill RBCs, DC at 2 mm was significantly greater than 6 mm. For the conventional RBCs, DC at 2 mm was significantly higher than at 4 mm and 6 mm. Mean PS ranged from 1.48% to 4.26% for BBR and BF, respectively. The DC at 2 mm and PS of bulk-fill RBCs were lower than their conventional counterparts. At 4 mm, the DC of giomer bulk-fill RBCs was lower than that of nongiomer bulk-fill materials.


Author(s):  
A. G. Lakshmisree ◽  
Arumugam Karthick ◽  
Nagarajan Geethapriya ◽  
Arunajatesan Subbiya

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1660
Author(s):  
Sevda Mihailova Yantcheva

The development of composite materials is subject to the desire to overcome polymerization shrinkage and generated polymerization stress. An indicator characterizing the properties of restorative materials, with specific importance for preventing secondary caries, is the integrity and durability of marginal sealing. It is a reflection of the effects of polymerization shrinkage and generated stress. The present study aimed to evaluate and correlate marginal integrity and micropermeability in second-class cavities restored with three different types of composites, representing different strategies to reduce polymerization shrinkage and stress: nanocomposite, silorane, and bulk-fill composite after a ten-month ageing period. Thirty standardized class ΙΙ cavities were prepared on extracted human molars. Gingival margins were 1 mm apical to the cementoenamel junction. Cavities were randomly divided into three groups, based on the composites used: FiltekUltimate-nanocomposite; Filtek Silorane LS-silorane; SonicFill-bulk-fill composite. All specimens were subjected to thermal cycles after that, dipped in saline for 10-mounds. After ageing, samples were immersed in a 2% methylene blue. Thus prepared, they were covered directly with gold and analyzed on SEM for assessment of marginal seal. When the SEM analysis was completed, the teeth were included into epoxy blocks and cut longitudinally on three slices for each cavity. An assessment of microleakage on stereomicroscope followed. Results were statistically analyzed. For marginal seal evaluation: F.Ultimate and F.Silorane differ statistically with more excellent results than SonicFill for marginal adaptation to the gingival margin, located entirely in the dentin. For microleakage evaluation: F.Ultimate and F.Silorane differ statistically with less microleakage than SonicFill. Based on the results obtained: a strong correlation is found between excellent results for marginal adaptation to the marginal gingival ridge and micropermeability at the direction to the axial wall. We observe a more significant influence of time at the gingival margin of the cavities. There is a significant increase in the presence of marginal fissures (p = 0.001). A significant impact of time (p < 0.000) and of the material (p < 0.000) was found in the analysis of the microleakage.


2009 ◽  
Vol 79 (1) ◽  
pp. 144-149 ◽  
Author(s):  
Mustafa Ulker ◽  
Tancan Uysal ◽  
Sabri Ilhan Ramoglu ◽  
Huseyin Ertas

Abstract Objective: To compare the microleakage of the enamel-adhesive-bracket complex at the occlusal and gingival margins of brackets bonded with high-intensity light curing lights and conventional halogen lights. Materials and Methods: Forty-five freshly extracted human maxillary premolar teeth were randomly separated into three groups of 15 teeth each. Stainless steel brackets were bonded in all groups according to the manufacturer's recommendations. Specimens (15 per group) were cured for 40 seconds with a conventional halogen light, 20 seconds with light-emitting diode (LED), and 6 seconds with plasma arc curing light (PAC). After curing, the specimens were further sealed with nail varnish, stained with 0.5% basic-fuchsine for 24 hours, sectioned and examined under a stereomicroscope, and scored for microleakage for the enamel-adhesive and bracket-adhesive interfaces from both the occlusal and gingival margins. Statistical analyses were performed using Kruskal-Wallis and Mann-Whitney U-tests with a Bonferroni correction. Results: The type of light curing unit did not significantly affect the amount of microleakage at the gingival or occlusal margins of investigated interfaces (P &gt;.05). The gingival sides in the LED and PAC groups exhibited higher microleakage scores compared with those observed on occlusal sides for the enamel-adhesive and adhesive-bracket interfaces. The halogen light source showed similar microleakage at the gingival and occlusal sides between both adhesive interfaces. Conclusions: High-intensity curing units did not cause more microleakage than conventional halogen lights. This supports the use of all these curing units in routine orthodontic practice.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6753
Author(s):  
Ramona S. Oltramare ◽  
Reto Odermatt ◽  
Phoebe Burrer ◽  
Thomas Attin ◽  
Tobias T. Tauböck

The aim of this in vitro study was to investigate the degree of C=C double bond conversion of high-viscosity dimethacrylate- or ormocer-based bulk-fill composites as a function of measurement depth. Four bulk-fill composites (Tetric EvoCeram Bulk Fill, x-tra fil, SonicFill, and Bulk Ormocer) and the conventional nanohybrid composite Tetric EvoCeram were applied in standardized Class II cavities (n = 6 per group) and photoactivated for 20 s at 1350 mW/cm2. The degree of conversion of the composites was assessed using Fourier-transform infrared spectroscopy at seven measurement depths (0.15, 1, 2, 3, 4, 5, 6 mm). Data were analyzed using repeated measures ANOVA and one-way ANOVA with Bonferroni post-hoc tests (α = 0.05). The investigated bulk-fill composites showed at least 80% of their maximum degree of conversion (80% DCmax) up to a measuring depth of at least 4 mm. Tetric EvoCeram Bulk Fill and Bulk Ormocer achieved more than 80% DCmax up to a measuring depth of 5 mm, x-tra fil up to 6 mm. The conventional nanohybrid composite Tetric EvoCeram achieved more than 80% DCmax up to 3 mm. In contrast to the conventional composite, the investigated ormocer- and dimethacrylate-based bulk-fill composites can be photo-polymerized in thick layers of up to at least 4 mm with regard to their degree of C=C double bond conversion.


Sign in / Sign up

Export Citation Format

Share Document