Peripheral Nerve Healing: So Near and Yet So Far

2021 ◽  
Vol 35 (03) ◽  
pp. 204-210
Author(s):  
Aslan Baradaran ◽  
Hassan El-Hawary ◽  
Johnny Ionut Efanov ◽  
Liqin Xu

AbstractPeripheral nerve injuries represent a considerable portion of chronic disability that especially affects the younger population. Prerequisites of proper peripheral nerve injury treatment include in-depth knowledge of the anatomy, pathophysiology, and options in surgical reconstruction. Our greater appreciation of nerve healing mechanisms and the development of different microsurgical techniques have significantly refined the outcomes in treatment for the past four decades. This work reviews the peripheral nerve regeneration process after an injury, provides an overview of various coaptation methods, and compares other available treatments such as autologous nerve graft, acellular nerve allograft, and synthetic nerve conduits. Furthermore, the formation of neuromas as well as their latest treatment options are discussed.

2016 ◽  
Vol 32 (2) ◽  
pp. 146-162 ◽  
Author(s):  
Haixing Xu ◽  
Lingxi Zhang ◽  
Yun Bao ◽  
Xiumei Yan ◽  
Yixia Yin ◽  
...  

The usage of hollow nerve conduits shows inferior recovery effect on the repair of peripheral nerve defects. In this study, a biocompatible and biodegradable pH-induced injectable chitosan–hyaluronic acid hydrogel for nerve growth factor encapsulation and sustained release was developed as the fillers in the lumen of hollow nerve conduit to reform its microenvironment for peripheral nerve regeneration. The physicochemical properties of hydrogel were characterized by gelation time, Fourier transform infrared spectroscopy, scanning electron microscopy, compressive modulus, porosity, swelling ratio, and in vitro degradation. The in vitro nerve growth factor release profiles and cell evaluation were also investigated. The results show that the structure of chitosan–hyaluronic acid hydrogel is composed of interconnected channels with a controllable pore diameter ranging from 20 to 100 µm. The hydrogel can be degraded more than 70% within 8 weeks in vitro and is available for nerve growth factor sustained release. The chitosan–hyaluronic acid/nerve growth factor hydrogel is non-toxic and suitable for adhesion and proliferation of nerve cells and capable of maintaining nerve growth factor activity. Therefore, it could be a promising intraluminal filler of nerve conduits for peripheral nerve regeneration in neural tissue engineering.


2020 ◽  
Vol 39 (5) ◽  
pp. 343-351 ◽  
Author(s):  
I. Regas ◽  
F. Loisel ◽  
H. Haight ◽  
G. Menu ◽  
L. Obert ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1366 ◽  
Author(s):  
Benedetta E. Fornasari ◽  
Marwa El Soury ◽  
Giulia Nato ◽  
Alessia Fucini ◽  
Giacomo Carta ◽  
...  

Conduits for the repair of peripheral nerve gaps are a good alternative to autografts as they provide a protected environment and a physical guide for axonal re-growth. Conduits require colonization by cells involved in nerve regeneration (Schwann cells, fibroblasts, endothelial cells, macrophages) while in the autograft many cells are resident and just need to be activated. Since it is known that soluble Neuregulin1 (sNRG1) is released after injury and plays an important role activating Schwann cell dedifferentiation, its expression level was investigated in early regeneration steps (7, 14, 28 days) inside a 10 mm chitosan conduit used to repair median nerve gaps in Wistar rats. In vivo data show that sNRG1, mainly the isoform α, is highly expressed in the conduit, together with a fibroblast marker, while Schwann cell markers, including NRG1 receptors, were not. Primary culture analysis shows that nerve fibroblasts, unlike Schwann cells, express high NRG1α levels, while both express NRG1β. These data suggest that sNRG1 might be mainly expressed by fibroblasts colonizing nerve conduit before Schwann cells. Immunohistochemistry analysis confirmed NRG1 and fibroblast marker co-localization. These results suggest that fibroblasts, releasing sNRG1, might promote Schwann cell dedifferentiation to a “repair” phenotype, contributing to peripheral nerve regeneration.


2020 ◽  
Vol 117 ◽  
pp. 180-191
Author(s):  
Juan Wang ◽  
Yuan Cheng ◽  
Haoyu Wang ◽  
Yuhao Wang ◽  
Kuihua Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document