scholarly journals Enhanced Peripheral Nerve Regeneration by a High Surface Area to Volume Ratio of Nerve Conduits Fabricated from Hydroxyethyl Cellulose/Soy Protein Composite Sponges

ACS Omega ◽  
2017 ◽  
Vol 2 (11) ◽  
pp. 7471-7481 ◽  
Author(s):  
Yanteng Zhao ◽  
Qiang Zhang ◽  
Lei Zhao ◽  
Li Gan ◽  
Li Yi ◽  
...  
2020 ◽  
Vol 39 (5) ◽  
pp. 343-351 ◽  
Author(s):  
I. Regas ◽  
F. Loisel ◽  
H. Haight ◽  
G. Menu ◽  
L. Obert ◽  
...  

2017 ◽  
Vol 8 ◽  
pp. 2640-2647 ◽  
Author(s):  
Xin Zhao ◽  
Zhong Chen

Nanostructures exhibit numerous merits to improve the efficiency in solar-to-energy conversion. These include shortened carrier collection pathways, an increased volume ratio between depletion layer and bulk, enhanced light capture due to multiple light scattering in nanostructures, and a high surface area for photochemical conversion reactions. In this study, we describe the synthesis of morphology-controlled W-doped BiVO4 by simply tuning the solvent ratio in precursor solutions. Planar and porous W-doped BiVO4 thin films were prepared and compared. The porous film, which exhibits increased surface area and enhanced light absorption, has displayed enhanced charge separation and interfacial charge injection. Our quantitative analysis showed an enhancement of about 50% of the photoelectrochemical performance for the porous structure compared to the planar structure. This enhancement is attributed to improved light absorption (13% increase), charge separation (14% increase), and interfacial charge injection (20% increase).


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1366 ◽  
Author(s):  
Benedetta E. Fornasari ◽  
Marwa El Soury ◽  
Giulia Nato ◽  
Alessia Fucini ◽  
Giacomo Carta ◽  
...  

Conduits for the repair of peripheral nerve gaps are a good alternative to autografts as they provide a protected environment and a physical guide for axonal re-growth. Conduits require colonization by cells involved in nerve regeneration (Schwann cells, fibroblasts, endothelial cells, macrophages) while in the autograft many cells are resident and just need to be activated. Since it is known that soluble Neuregulin1 (sNRG1) is released after injury and plays an important role activating Schwann cell dedifferentiation, its expression level was investigated in early regeneration steps (7, 14, 28 days) inside a 10 mm chitosan conduit used to repair median nerve gaps in Wistar rats. In vivo data show that sNRG1, mainly the isoform α, is highly expressed in the conduit, together with a fibroblast marker, while Schwann cell markers, including NRG1 receptors, were not. Primary culture analysis shows that nerve fibroblasts, unlike Schwann cells, express high NRG1α levels, while both express NRG1β. These data suggest that sNRG1 might be mainly expressed by fibroblasts colonizing nerve conduit before Schwann cells. Immunohistochemistry analysis confirmed NRG1 and fibroblast marker co-localization. These results suggest that fibroblasts, releasing sNRG1, might promote Schwann cell dedifferentiation to a “repair” phenotype, contributing to peripheral nerve regeneration.


QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
H Ibrahim

Abstract Nowadays there are more interesting with nanotechnology and its applications in several sectors specially in medicine for diagnoses, therapeutic and research biomedical tools. It can be defined as any process or technique used to produce material in nano-scale structure with particle size ranged from 1-100 nm. The utilization of nanotechnology in human health benefits known as nano medicine. So that nanotechnology has firmly entered the drug delivery realm to maximize drug therapeutic activity and minimize its undesirable side effects. Herein we deal with both nanoparticles and nano-fibers and their applications in medical field. Nano-particles have unique properties from its small size with high surface area therefore it provides larger than particle numbers from that prepared with convention methods. In addition, nanoparticles can be used to improve various drug bio-availability from its biodegradability and bio-compatibility. Nano-fibers have huge surface area to volume ratio which increase its performance in several applications. Nano-fiber produced via electrospinning process (simple and have high production rate). It can be used in many applications such as water filtration, tissue engineering scaffold, wounds, fiber composites, drug release and protective clothes.


Sign in / Sign up

Export Citation Format

Share Document