Life-Cycle Costs of New Construction Materials

1997 ◽  
Vol 3 (4) ◽  
pp. 129-133 ◽  
Author(s):  
Mark A. Ehlen
Author(s):  
Jingqin Gao ◽  
Kaan Ozbay ◽  
Hani Nassif ◽  
Onur Kalan

The sustainability of transportation infrastructure depends on the adoption of new construction materials and technologies that can potentially improve performance and productivity. However, most agencies would like to evaluate these new materials and technologies at both the project and network levels before replacing the traditional ones. It also remains a challenge to reliably estimate the costs and lifetime performance of new construction materials and technologies because of limited implementation data. To address these issues, this paper presents a comprehensive bottom-up methodology based on Life Cycle Cost Analysis (LCCA) to integrate project- and network-level analysis that can fast-track the acceptance of new materials or technologies. Hypothesized improvement rates are applied to the deterioration functions of existing materials to represent the expected improved performance of a new material compared with a conventional material with relatively similar characteristics. This new approach with stochastic treatment allows us to probabilistically evaluate new materials with limited data for their future performance. Feasible maintenance and rehabilitation schedules are found for each facility at the project level and near-optimal investment strategies are identified at the network level by using a metaheuristic evolutionary algorithm while satisfying network-wide constraints. This provides an effective solution to many issues that have not been fully addressed in the past, including the trade-off between multiple objectives, effects of time, uncertainty, and outcome interpretation. A hypothetical bridge deck system from New Jersey’s bridge inventory database is used to demonstrate the applicability of the proposed methodology in constructing a planning and management decision-support procedure.


2015 ◽  
Vol 25 (4) ◽  
pp. 684-714 ◽  
Author(s):  
Charles Wilkins ◽  
Maya Brennan ◽  
Amy Deora ◽  
Anker Heegaard ◽  
Albert Lee ◽  
...  

2003 ◽  
Author(s):  
Shayne Brannman ◽  
Eric W. Christensen ◽  
Ronald H. Nickel ◽  
Cori Rattelman ◽  
Richard D. Miller

Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


Author(s):  
Shuyan Zhang ◽  
Shuyin Duan ◽  
Fushuan Wen ◽  
Farhad Shahnia ◽  
Qingfang Chen ◽  
...  

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


Sign in / Sign up

Export Citation Format

Share Document