In Situ Test and Numerical Analysis of Traffic-Load-Induced Cumulative Settlement of Alluvial Silt After Treatment with Burnt Lime

2020 ◽  
Vol 20 (2) ◽  
pp. 04019171
Author(s):  
Qing Jin ◽  
Xin-zhuang Cui ◽  
Jun Li ◽  
Jun-wei Su ◽  
Yi-lin Wang
2015 ◽  
Vol 740 ◽  
pp. 116-119
Author(s):  
Zhen Yu Li ◽  
Ping Yang ◽  
Zhi Hua Sun ◽  
Lin Suan Liu

The nonlinear FEM analysis is performed to the problem of large strain nonlinear application for flexible mattress. The element with cloth type option is used to establish the FEM model for the analysis of flexible mattress. The simulation can produce correct profile of deformation, accurate distribution of stress and strain, meanwhile taking account of geometric nonlinear from large strain. The results of the paper are compared with those from the theory and in-situ test. Some valuable conclusions are made from the results analysis.


2021 ◽  
Vol 9 (6) ◽  
pp. 639
Author(s):  
Hong Zhang ◽  
Xiaolei Liu ◽  
Anduo Chen ◽  
Weijia Li ◽  
Yang Lu ◽  
...  

Liquefied submarine sediments can easily lead to submarine landslides and turbidity currents, and cause serious damage to offshore engineering facilities. Understanding the rheological characteristics of liquefied sediments is critical for improving our knowledge of the prevention of submarine geo-hazards and the evolution of submarine topography. In this study, an in situ test device was developed to measure the rheological properties of liquefied sediments. The test principle is the shear column theory. The device was tested in the subaqueous Yellow River delta, and the test results indicated that liquefied sediments can be regarded as “non-Newtonian fluids with shear thinning characteristics”. Furthermore, a laboratory rheological test was conducted as a contrast experiment to qualitatively verify the accuracy of the in situ test data. Through the comparison of experiments, it was proved that the use of the in situ device in this paper is suitable and reliable for the measurement of the rheological characteristics of liquefied submarine sediments. Considering the fact that liquefaction may occur in deeper water (>5 m), a work pattern for the device in the offshore area is given. This novel device provides a new way to test the undrained shear strength of liquefied sediments in submarine engineering.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6531 ◽  
Author(s):  
Zongxing Zou ◽  
Qi Zhang ◽  
Chengren Xiong ◽  
Huiming Tang ◽  
Lei Fan ◽  
...  

Slip zone soil is usually composed of clay or silty clay; in some special geological environments, it contains gravels, which make the properties of the slip zone soil more complex. Unfortunately, in many indoor shear tests, gravels are removed to meet the demands of apparatus size, and the in situ mechanical property of the gravelly slip zone soil is rarely studied. In this study, the shear mechanical property of the gravelly slip zone soil of Huangtupo landslide in the Three Gorges Reservoir area of China was investigated by the in situ shear test. The test results show that the shear deformation process of the gravelly slip zone soil includes an elastic deformation stage, elastic–plastic deformation stage, and plastic deformation stage. Four functions were introduced to express the shear constitutive model of the gravelly slip zone soil, and the asymmetric sigmoid function was demonstrated to be the optimum one to describe the relationship of the shear stress and shear displacement with a correlation coefficient of 0.986. The comparison between the in situ test and indoor direct shear test indicates that gravels increase the strength of the slip zone soil. Therefore, the shear strength parameters of the gravelly slip zone soil obtained by the in situ test are more preferable for evaluating the stability of the landslide and designing the anti-slide structures.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


Sign in / Sign up

Export Citation Format

Share Document