Effect of Sodium Hypochlorite-Activated Crumb Rubber on Rheological Properties of Rubber-Modified Asphalt

2020 ◽  
Vol 32 (11) ◽  
pp. 04020326
Author(s):  
Bo Li ◽  
Qidong Li ◽  
Xuwei Zhu ◽  
Yongzheng Wei ◽  
Zhiwei Li ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1563 ◽  
Author(s):  
Xie ◽  
Yang ◽  
Lv ◽  
Zhang ◽  
Zhu ◽  
...  

Acrylamide with a double bond and amide group can not only copolymerize with macromolecules of crumb rubber but also react with acidic groups in asphalt, so it was selected as a modifier to activate crumb rubber through chemical graft action. The purpose is to improve the compatibility between crumb rubber and asphalt and thus improve the rheological properties and storage stability of rubber asphalt. Infrared spectroscopy (IR) and scanning electron microscopy (SEM) were used to characterize the crumb rubbers and their modified asphalt. It was found that the crumb rubber of grafting acrylamide had better compatibility in asphalt due to its larger specific surface area and chemical reaction with asphalt. In addition, the high temperature rheological test, low temperature creep test, and polymer separation test were carried out to study the effect of grafted activated crumb rubber on the properties of modified asphalt. The results showed that compared with modified asphalt with common crumb rubber (CRMA), the rheological properties and storage stability of modified asphalt with grafting activated crumb rubber (A–G–R) were improved significantly. The results of microscopic and macroscopic tests show that the activated rubber particles have a larger contact area with asphalt due to a rougher surface and the chemical cross-linking between rubber particles and asphalt further strengthens their interaction. Therefore, there is a relatively stable blend system formed in modified asphalt, and its performance of modified asphalt has been improved.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2693
Author(s):  
Weihong Liu ◽  
Yishen Xu ◽  
Hongjun Wang ◽  
Benan Shu ◽  
Diego Maria Barbieri ◽  
...  

Segregation of waste crumb rubber powder (WR) modified asphalt binders the large-scale application of WR in asphalt. The method of microwave activation combined with chemical activation (KMWR) was proposed to improve storage stability and rheological properties of WR modified asphalt in this work. Storage stability and rheological properties of virgin asphalt, MWR modified asphalt, and KMWR modified asphalt were comparatively studied by the standard segregation test, bending beam rheometer (BBR) test, and dynamic shear rheometer (DSR) test. The effect of composite activation on waste rubber powder particles was studied by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and Brunauer–Emmett–Teller (BET) tests. The main results showed that after the physical and chemical composite activation, the storage stability of waste rubber powder modified asphalt was significantly improved, WR modified asphalt had better crack resistance, better rutting resistance, and better fatigue performance. After physical and chemical activation, WR was desulfurized, and a large number of active groups was grafted on the WR particles.


Author(s):  
Haopeng Wang ◽  
Xueyan Liu ◽  
Panos Apostolidis ◽  
Tom Scarpas

The microstructure and chemical composition of asphalt binders have a significant effect on their rheological properties and, therefore, their performance as road paving binders. This study aims to investigate the effects of warm-mix asphalt (WMA) additives, organic type and chemical type, on the rheological properties and chemical internal structure of base asphalt and crumb rubber modified asphalt (CRMA). A set of dynamic shear rheometer (DSR) tests was conducted to obtain the rheological parameters (e.g., complex viscosity, complex modulus, phase angle) of asphalt binders. The flow activation energy was calculated from Arrhenius equation based on viscosity data to rank the thermal susceptibility. Black diagrams and master curves of complex modulus and phase angle were utilized to analyze the rheological properties. The molecular weight distributions of asphalt binders were inverted from the phase angle master curve to evaluate the molecular weight characteristics. It was found that the the addition of crumb rubber into base asphalt improves the rheological properties of enhanced modulus and elasticity. Organic and chemical types of WMA additives have different chemo-physical effects on both base asphalt and CRMA. Phase angle inversion method provides a powerful tool to monitor the molecular structure change and, therefore, the chemo-physical interactions of asphalt binders induced by modifications. Finally, there is a good correlation between flow activation energy and molecular weight.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3780
Author(s):  
Jingyao Yang ◽  
Gang Xu ◽  
Peipei Kong ◽  
Xianhua Chen

With the growing interest in bituminous construction materials, desulfurized crumb rubber (CR)/styrene–butadiene–styrene (SBS) modified asphalts have been investigated by many researchers as low-cost environmental-friendly road construction materials. This study aimed to investigate the rheological properties of desulfurized CR/SBS composite modified asphalt within various temperature ranges. Bending beam rheometer (BBR), linear amplitude sweep (LAS), and multiple stress creep recovery (MSCR) tests were performed on conventional CR/SBS composite modified asphalt and five types of desulfurized CR/SBS modified asphalts. Meanwhile, Burgers’ model and the Kelvin–Voigt model were used to derive nonlinear viscoelastic parameters and analyze the viscoelastic mechanical behavior of the asphalts. The experimental results indicate that both the desulfurized CR/SBS composite modifier and force chemical reactor technique can enhance the crosslinking of CR and SBS copolymer, resulting in an improved high-, intermediate-, and low-temperature performance of desulfurized CR/SBS composite modified asphalt. Burgers’ model was found to be apposite in simulating the creep stages obtained from MSCR tests for CR/SBS composite modified asphalts. The superior high-temperature performance of desulfurized CR/SBS modified asphalt prepared with 4% SBS, 20% desulfurized rubber, and a force chemical reactor time of 45 min contributes to the good high-temperature elastic properties of the asphalt. Therefore, this combination is recommended as an optimal preparation process. In summary, the desulfurization of crumb rubber and using the force chemical reactor technique are beneficial to composite asphalt performance and can provide a new way of utilizing waste tire rubber.


2016 ◽  
Vol 112 ◽  
pp. 49-58 ◽  
Author(s):  
Ouming Xu ◽  
Feipeng Xiao ◽  
Sen Han ◽  
Serji N. Amirkhanian ◽  
Zhenjun Wang

2019 ◽  
Vol 194 ◽  
pp. 238-246 ◽  
Author(s):  
Juncheng Tang ◽  
Chongzheng Zhu ◽  
Henglong Zhang ◽  
Guoqing Xu ◽  
Feipeng Xiao ◽  
...  

2016 ◽  
pp. 499-508
Author(s):  
Gongying Ding ◽  
Xin Yu ◽  
Fuqiang Dong ◽  
Fan Gu

Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman

Asphalt binder modification by crumb rubber modifier (CRM) could enhance its rheological properties at high and intermediate temperatures by increasing its stiffness and elasticity. To obtain a modified binder blend with more enhanced intermediate- and low-temperature rheological properties, used motor oil (UMO) was introduced to the crumb rubber-modified asphalt (CRMA) binder. The enhanced high- and intermediate-temperature rheological properties of the modified binders were investigated using a temperature sweep test. UMO, used as a rejuvenator, can regulate the CRM role in the modified binder blend by creating a balance between the binder’s enhanced stiffness and fluidity. This was achieved by increasing |G*|/sin δ at high temperatures and decreasing |G*|.sin δ at intermediate temperatures. The mutual components between the CRM and the asphalt binder were explored by thermogravimetric analysis and Fourier transform infrared (FTIR) spectroscopy. UMO was found to have similar FTIR bands of the asphalt binder that helped the CRM particles to absorb more low-molecular-weight fractions at the beginning of the interaction time, which caused them to swell more and then dissolve, releasing their polymeric components in the asphalt binder’s liquid phase. Adding UMO with two and half percentage by the weight of the neat asphalt binder to the CRMA binder, interacted at 190°C–50 Hz–60 min, could increase the CRM dissolution and cause a greater release of CRM polymeric components into the asphalt binder matrix. This was assured by the presence of FTIR peaks at 911 and 966 cm−1 that are related to the polybutadiene, synthetic rubber in CRM.


Sign in / Sign up

Export Citation Format

Share Document