Specimen Size Effect and Dynamic Increase Factor for Basalt Fiber–Reinforced Concrete Using Split Hopkinson Pressure Bar

Author(s):  
Kavita Ganorkar ◽  
M. D. Goel ◽  
Tanusree Chakraborty
1995 ◽  
Vol 30 (18) ◽  
pp. 4720-4725 ◽  
Author(s):  
J. Rodr�guez ◽  
R. Cort�s ◽  
M. A. Mart�nez ◽  
V. S�nchez-G�lvez ◽  
C. Navarro

2012 ◽  
Vol 450-451 ◽  
pp. 523-526 ◽  
Author(s):  
Hai Feng Liu ◽  
Wei Wu Yang ◽  
Jian Guo Ning

The dynamic compression tests of reinforced concrete with different reinforcement ratios are carried out by split Hopkinson pressure bar (SHPB). Reinforced steel bar is placed along longitudinal and transverse direction. Experimental results show that reinforced concrete is non-linear and rate-dependent. With the enhancement of strain rate, the peak stress of reinforced concrete increases correspondingly


2018 ◽  
Vol 174 ◽  
pp. 02022 ◽  
Author(s):  
Anatoliy Bragov ◽  
Leonid Igumnov ◽  
Andrey Lomunov ◽  
Alexander Konstantinov ◽  
Dmitriy Lamzin ◽  
...  

The dynamic test techniques used to obtain the mechanical properties of brittle materials are described. The techniques are based on the fundamental Kolsky method using the Split-Hopkinson Pressure Bar. Dynamic tests are characterized by high intensity and short duration and the influence of inertia on their results should be ruled out which is especially important for brittle media. The prerequisites and assumptions presented methods are described to justify the validity of the obtained data. The methods allow to obtain dynamic deformation diagrams at compression, splitting, indirect tension, shear and triaxial stress state and also to determine the ultimate strength, strain and time properties of brittle materials. The techniques are approved in the tests of ceramic bricks, finegrain concrete and fiber-reinforced concrete.


2013 ◽  
Vol 535-536 ◽  
pp. 141-144 ◽  
Author(s):  
Jing Xiao ◽  
Dong Wei Shu

The specimen size has always been crucial in defining the materials behaviour and becomes more important when materials are subjected to high rates of loadings. In the current study, the effect of specimen size on the mechanical behaviour of AZ31B alloy has been investigated under dynamic compression using the Split Hopkinson Pressure Bar (SHPB) and results are presented. Specimens were made in different sizes with fixed slenderness ratio (l/d) of 0.5 and with bar to specimen diameter ratio varying between 0.47 and 0.79. When deformed at the same strain rate 1500±50s-1, the smaller specimens give higher stresses and smaller strains. The smaller size specimens give more uniform strain rate as compared to the larger size specimens. However, some spurious oscillations are observed in the stress-strain curves for smaller size specimens. The alloy shows higher hardening behavior for larger size specimen; the hardening exponent n is larger for larger size specimens.


2013 ◽  
Vol 20 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Wojciech Moćko

Abstract The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient


Sign in / Sign up

Export Citation Format

Share Document