Enhanced Repair Techniques of Corroded Reinforced Concrete Short Columns

Author(s):  
Khaled Fawzy ◽  
Mohamed A. Farouk
2021 ◽  
Vol 11 (16) ◽  
pp. 7634
Author(s):  
Aleksandr V. Shilov ◽  
Alexey N. Beskopylny ◽  
Besarion Meskhi ◽  
Dmitry Mailyan ◽  
Dmitry Shilov ◽  
...  

Increasing the bearing capacity of reinforced concrete structures, reducing material consumption, and ensuring quality are critical in modern construction. The article presents an experimental study of the ultimate compressive strains of short fiber basalt reinforced concrete columns and provides recommendations for increasing the bearing capacity using steel reinforcement bars with greater strength. The columns were tested in an upright position using a hydraulic press. Strains were measured with dial indicators and a strain gauge station. It was shown that the addition of 10% coarse basalt fiber increased the ultimate compressibility of concrete on ordinary crushed stone by 19.8%, and expanded clay concrete by 26.1%, which led to the strain hardening of concrete under compression by 9.0% and 12%, respectively. Ultimate compressive strains in fiber-reinforced concrete short columns with combined reinforcement increased 1.42 times in columns on a lightweight aggregate and 1.19 times on heavy aggregate. An increase in the ultimate compressibility of concrete makes it possible to use steel reinforcement with greater strength in compressed elements as the concrete crushing during compression occurs primarily due to the reaching of critical values by tensile stresses in the transverse direction. This makes it possible to manufacture structures with a higher load-bearing capacity and less material consumption. A practical example of the application of the proposed approach is given.


1988 ◽  
Vol 15 (5) ◽  
pp. 916-928 ◽  
Author(s):  
P. Riva ◽  
M. Z. Cohn

Design interaction diagrams, Pr–Mr, for rectangular reinforced concrete sections under combined bending and axial compression or tension forces in accordance with the current Canadian code are presented. The interest of the note is that the interaction diagrams eliminate the limitations of those in the Canadian Portland Cement Association Handbook. Their format can be extended to other section shapes and reinforcement layouts. Key words: Combined bending, design aids, interaction diagrams, rectangular sections, reinforced concrete, short columns, strength analysis.


2011 ◽  
Vol 94-96 ◽  
pp. 1205-1210
Author(s):  
Zhao Liu ◽  
Jun Hai Zhao

The mechanical behavior and ultimate bearing capacity of the circular bar-reinforced concrete filled steel tube (BRCFST) short columns under axial compression are analyzed in this paper based on the unified strength theory. Considering the restriction effect of steel tube and hoop bar on concrete, the calculation formula of bearing capacity of the column is deduced. Parametric studies are carried out to evaluate the effects of intermediate principal stresses, diameter-thickness ratio of steel tube and the stirrup ratio on the bearing capacity of the column. A good agreement is reached by comparing the results calculated by the formula with the test results. It is concluded that the unified strength theory is applicable in the theoretical analyses of the BRCFST columns.


2014 ◽  
Vol 941-944 ◽  
pp. 877-882
Author(s):  
Fang Zhang ◽  
Sheng Bai ◽  
Jin Feng Hao

Through the analysis of the possibilities of failure modes of RC short columns and advantages of outsourcing steel stick hair,put forward the method of reinforced concrete column strengthened with angle steel,and analyse its reinforcement effect through the experiment.


2016 ◽  
Vol 16 (02) ◽  
pp. 1450095 ◽  
Author(s):  
Yongtao Bai ◽  
Guoliang Bai

This paper presents a series of pseudo-dynamic tests (PDTs) and quasi-static tests (QSTs) on a dual wing-walled frame system, represented here by a 1/7-scaled composite moment frame with steel reinforced concrete (SRC) columns and reinforced concrete (RC) wing walls. Special characteristics of this scaled system are irregular story layout, strong-beam weak-column mechanism and large axial load. A series of scaled El-Centro (NS) waves were used as the input ground motion for the PDTs, the results of which showed that the seismic behavior was significantly improved by the RC wing walls. With the strong-beam weak-column connections, severe damages sustained by the longitudinal wing walls (LWW) prevented the potential collapse of column, and the transverse wing wall (TWW) efficiently avoided the fragile shear failure of short columns and panel zone of beam-column joints. The failure mechanisms were identified indicating that wing walls improved the ductility for the bare frame. This study provides a solid experimental support on the evaluation of seismic behavior of irregular SRC frames with RC wing walls, which could be applied in the main factory buildings of thermal power plants (TPP).


Sign in / Sign up

Export Citation Format

Share Document