scholarly journals Seismic Evaluation of Masonry Structures Strengthened with Reinforced Concrete Layers

2012 ◽  
Vol 138 (6) ◽  
pp. 729-743 ◽  
Author(s):  
Bahman Ghiassi ◽  
Masoud Soltani ◽  
Abbas Ali Tasnimi
2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Thasbih Al Fajri ◽  
Rafki Imani ◽  
Zakpar Siregar

The office building of the food security office of West Sumatra Province is a multi-storey building with reinforced concrete structures built in earthquake-prone areas that have the potential for large-scale earthquakes such as the one that occurred in 2009. Based on USGS data, from December 2004 to October 2009 There have been 10 earthquakes measuring more than 5 on the Richter scale that rocked Indonesia and resulted in damage to buildings, both minor damage to heavy damage and evencollapsing. The big earthquake that occurred on September 30, 2009 in Padang City, West Sumatra, was measuring 7.6 on the Richter scale. In this study, evaluated the seismic capacity of a reinforced concrete building 4 (four) floors built in earthquake-prone areas in the city of Padang. The seismic capacity of the building is evaluated based on the standard published by Japan, namely The Standard for Seismic Evaluation of Existin Reinforced Concrete Building, 2001. In this evaluation, it only looks at the structural elements of the column on the first floor. Seismic capacity is expressed in terms of the lateral strength index and the ductility index of the building. The results of the evaluation of seismic capacity obtained the total strength index value of the building is 0.707. The seismic capacity of this building can be shown to be adequate or strongin earthquake-prone areas compared to the seismic capacity of reinforced concrete buildings that survived the massive earthquake of 7.6 on the Richter Scale in West Sumatra in September 2009. From the evaluation results on this building which is located in an area including the prone to strong earthquakes can be stated to be able to behave ductile and able to withstand an earthquake or not experience sudden collapse


2018 ◽  
Vol 188 ◽  
pp. 03010
Author(s):  
Maria Basdeki ◽  
Argyro Drakakaki ◽  
Charis Apostolopoulos

Greece is an earthquake prone area, which is also exposed to coastal environment. Most existing buildings present common characteristics, concerning quality of the materials and environmental conditions [1].The vulnerability of these structures is exteriorized under powerful seismic loads. This is because they were designed, according to older regulations, primarily to bear vertical loads and secondarily to bear horizontal loads, an indicative sign of the absence of anti-seismic design. Designing and evaluation of the seismic performance of existing structures is a really complex issue, because structural degradation phenomenon is related to both corrosion damage of steel reinforcement on RC structures and high vulnerability of masonry. Precisely, the inadequate seismic performance of masonry structures, which is recorded under intense earthquakes, is attributed to the characteristics of masonry and to the ageing phenomena of the materials. For the seismic inspection of masonry structures, both EC2 and OASP can be used [3], although there is often a great misunderstanding concerning the range of the maximum permissible interventions, the financial inability and modern perceptions of redesigning [2]. On the other hand, in the case of RC structures, there is no prediction –concerning the corrosion factor- included in the international regulations and standards. In the current study is presented an experimental procedure, concerning a RC column before and after corrosion. An estimation concerning the drop of its mechanical performance has taken place, indicating the importance of the corrosion factor. Additionally, an existing monumental masonry tower building, was subjected to seismic evaluation [4]. Both OASP and EC2 inspection methods were used. The results pointed out that, for medium–intensity earthquakes, both analytical and approximate methods are respectable and reliable.


1996 ◽  
Vol 12 (4) ◽  
pp. 715-739 ◽  
Author(s):  
Abraham C. Lynn ◽  
Jack P. Moehle ◽  
Stephen A. Mahin ◽  
William T. Holmes

Past earthquakes have emphasized the vulnerability of reinforced concrete columns having details typical of those built before the mid-1970's. These columns are susceptible to axial-flexural, shear, and bond failures, which subsequently may lead to severe damage or collapse of the building. Research was undertaken to investigate the lateral and vertical load-resisting behavior of reinforced concrete columns typical of pre-1970's construction. Eight full-scale specimens were constructed and were loaded with constant axial load and increasing cyclic lateral displacement increments until failure. Test data are presented and compared with behavior estimated by using various evaluation methods.


2021 ◽  
Vol 27 (6) ◽  
pp. 73-96
Author(s):  
Haider A Abass ◽  
Husain Khalaf Jarallah

Pushover analysis is an efficient method for the seismic evaluation of buildings under severe earthquakes. This paper aims to develop and verify the pushover analysis methodology for reinforced concrete frames. This technique depends on a nonlinear representation of the structure by using SAP2000 software. The properties of plastic hinges will be defined by generating the moment-curvature analysis for all the frame sections (beams and columns). The verification of the technique above was compared with the previous study for two-dimensional frames (4-and 7-story frames). The former study leaned on automatic identification of positive and negative moments, where the concrete sections and steel reinforcement quantities the source of these moments. The comparison of the results between the two methodologies was carried out in terms of capacity curves. The results of the conducted comparison highlighted essential points. It was included the potential differences between default and user-defined hinge properties in modeling. The effect of the plastic hinge length and the transverse of shear reinforcement on the capacity curves was also observed. Accordingly, it can be considered that the current methodology in this paper more logistic in the representation of two and three-dimensional structures.  


Sign in / Sign up

Export Citation Format

Share Document