Cyclic Behavior of Lap Splices Strengthened with Ultrahigh Performance Fiber-Reinforced Concrete

2017 ◽  
Vol 143 (2) ◽  
pp. 04016163 ◽  
Author(s):  
Marc-André Dagenais ◽  
Bruno Massicotte
2018 ◽  
Vol 20 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Patricia A. Sarmiento ◽  
Benjamín Torres ◽  
Daniel M. Ruiz ◽  
Yezid A. Alvarado ◽  
Isabel Gasch ◽  
...  

2021 ◽  
Author(s):  
Eline Vandecruys ◽  
Maure De Smedt ◽  
Rutger Vrijdaghs ◽  
Els Verstrynge ◽  
Lucie Vandewalle

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Lihua Xu ◽  
Biao Li ◽  
Yin Chi ◽  
Changning Li ◽  
Biao Huang ◽  
...  

This paper investigates the cyclic stress-strain behavior of steel-polypropylene-blended fiber-reinforced concrete (BFRC) under uniaxial cyclic compression. A total of 48 prism specimens were tested for different fiber volume fractions and aspect ratios. The results show that the introduction of blended fibers has synergetic effects on improving the cyclic behavior of concrete in terms of peak strength, postpeak ductility, hysteretic energy dissipation, and stiffness degradation. Moreover, the increase in the volume fractions of both steel and polypropylene fibers can lead to a remarkable decrease in plastic strain accumulation. Furthermore, the stiffness degradation ratio as well as the stress deterioration ratio of BFRC can be significantly alleviated in comparison with those of plain concrete, notwithstanding that the degradation amount is insensitive to the variations of fiber parameters. Subsequently, based on the test results, a constitutive model is developed to generalize the cyclic stress-strain responses of BFRC, with the contributions of blended fibers taken into account. The developed model is then verified by independent experimental results and other test data reported in the literature. It is observed that the prediction yields a close estimation of the cyclic compressive behavior of BFRC with varying fiber parameters.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


PCI Journal ◽  
2012 ◽  
Vol 57 (3) ◽  
pp. 33-46 ◽  
Author(s):  
Nemkumar Banthia ◽  
Vivek Bindiganavile ◽  
John Jones ◽  
Jeff Novak

Sign in / Sign up

Export Citation Format

Share Document