Snowmelt and Agricultural Runoff: Load Quantification and Event Timing

Author(s):  
Michael R. Penn ◽  
Randy Mentz ◽  
Dennis Busch
Author(s):  
Marci Sammons ◽  
Sharon Mutter ◽  
Leslie Plumlee ◽  
Laura Strain

Author(s):  
Santhosh K. M ◽  
S. Prashanth

Urban development, agricultural runoff and industrialization have contributed pollution loading on the environment.  In this study Hemavathi river water from a stretch from its origin point to its sangama was studied for pollution load by determining parameters of water quality like pH, Alkalinity,  Ca, Mg, Nitrate, TDS, BOD, COD , and the results were compared with WHO and BIS standards to draw final conclusion on the quality of water.


2002 ◽  
Vol 2 (2) ◽  
pp. 131-137
Author(s):  
N.D. Basson ◽  
C.F. Schutte

The paper deals with laboratory and full-scale studies aimed at optimising treatment processes at the Balkfontein plant of Sedibeng Water in South Africa. The raw water is highly eutrophic and contains a large fraction of treated effluent from domestic and industrial sources as well as agricultural runoff. The eutrophic nature and changing raw water quality give rise to many operational difficulties and high treatment costs as well as problems with the final water quality. Optimisation of the coagulation and chlorination processes was seen as a cheaper solution to these problems than to install advanced processes such as ozonation and activated carbon adsorption that would add greatly to treatment costs. The laboratory studies indicated that through optimisation of coagulation-flocculation and by replacement of pre-chlorination by intermediate chlorination (after primary sedimentation) most of the treatment problems could be solved and final water of the required quality produced without a large increase in treatment costs.


1985 ◽  
Vol 17 (6-7) ◽  
pp. 1133-1140 ◽  
Author(s):  
L. Kauppi

Agriculture accounts for 9 per cent of the total surface area of Finland and generates the greatest single nutrient input to Finnish watercourses. Since agricultural activity is scattered throughout the whole country its effects in lakes are less pronounced than those of domestic and industrial effluents. On the other hand, point source phosphorus loading of lakes and rivers decreased significantly during the nineteen-seventies. Phosphorus is the nutrient which primarily limits production in most Finnish lakes. The availability of phosphorus in agricultural runoff waters is therefore a crucial question in the evaluation of the eutrophicating effects of agriculture. Our results indicated that in runoff waters available phosphorus can be 60-70 per cent of the total phosphorus. However, the concentrations of available P were so low that they could be achieved in Finnish lakes of low ionic concentration through simple chemical desorption without the assistance of the algal uptake. The utilization of the spring maximum of runoff phosphorus in lakes would thus not depend on the concurrence of the maxima of loading and algal growth.


1995 ◽  
Vol 31 (8) ◽  
pp. 109-121 ◽  
Author(s):  
D. L. Anderson ◽  
E. G. Flaig

Restoration and enhancement of Lake Okeechobee and the Florida Everglades requires a comprehensive approach to manage agricultural runoff. The Florida Surface Water Improvement and Management (SWIM) Act of 1987 was promulgated to develop and implement plans for protecting Florida waters. The South Florida Water Management District was directed by Florida legislature to develop management plans for Lake Okeechobee (SWIM) and the Everglades ecosystem (Marjory Stoneman Douglas Everglades Protection Act of 1991). These plans require agriculture to implement best management practices (BMPs) to reduce runoff phosphorus (P) loads. The Lake Okeechobee SWIM plan established a P load reduction target for Lake Okeechobee and set P concentration limitations for runoff from non-point source agricultural sources. Agricultural water users in the Everglades Agricultural Area (EAA) are required to develop farm management plans to reduce P loads from the basin by 25%. The Everglades Forever Act of 1994 additionally emphasized linkage of these landscapes and consequent protection and restoration of the Everglades. Agricultural BMPs are being developed and implemented to comply with water management, environmental, and regulatory standards. Although BMPs are improving runoff water quality, additional research is necessary to obtain the best combination of BMPs for individual farms. This paper summarizes the development of comprehensive water management in south Florida and the agricultural BMPs carried out to meet regulatory requirements for Lake Okeechobee and the Everglades.


2019 ◽  
Vol 25 (34) ◽  
pp. 3645-3663 ◽  
Author(s):  
Muhammad Ismail ◽  
Kalsoom Akhtar ◽  
M.I. Khan ◽  
Tahseen Kamal ◽  
Murad A. Khan ◽  
...  

: Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can’t degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.


2019 ◽  
Author(s):  
Stephanie Tassier-Surine ◽  
◽  
Phillip J. Kerr ◽  
Kathleen R. Goff ◽  
Nick Lefler

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1687
Author(s):  
Richard E. Lizotte ◽  
Peter C. Smiley ◽  
Robert B. Gillespie ◽  
Scott S. Knight

Conservation agriculture practices (CAs) have been internationally promoted and used for decades to enhance soil health and mitigate soil loss. An additional benefit of CAs has been mitigation of agricultural runoff impacts on aquatic ecosystems. Countries across the globe have agricultural agencies that provide programs for farmers to implement a variety of CAs. Increasingly there is a need to demonstrate that CAs can provide ecological improvements in aquatic ecosystems. Growing global concerns of lost habitat, biodiversity, and ecosystem services, increased eutrophication and associated harmful algal blooms are expected to intensify with increasing global populations and changing climate. We conducted a literature review identifying 88 studies linking CAs to aquatic ecological responses since 2000. Most studies were conducted in North America (78%), primarily the United States (73%), within the framework of the USDA Conservation Effects Assessment Project. Identified studies most frequently documented macroinvertebrate (31%), fish (28%), and algal (20%) responses to riparian (29%), wetland (18%), or combinations (32%) of CAs and/or responses to eutrophication (27%) and pesticide contamination (23%). Notable research gaps include better understanding of biogeochemistry with CAs, quantitative links between varying CAs and ecological responses, and linkages of CAs with aquatic ecosystem structure and function.


2014 ◽  
Vol 12 (3) ◽  
pp. 484-491 ◽  
Author(s):  
Andrea Crampton ◽  
Angela T. Ragusa

Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.


Sign in / Sign up

Export Citation Format

Share Document