Application of Ultrasonic Pulse Velocity Testing of Asphalt Concrete Mixtures to Improve the Prediction Accuracy of Dynamic Modulus Master Curve

Author(s):  
Pezhouhan Tavassoti-Kheiry ◽  
Ilker Boz ◽  
Xuan Chen ◽  
Mansour Solaimanian
2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 928 ◽  
pp. 257-262 ◽  
Author(s):  
Trong Phuoc Huynh ◽  
Chao Lung Hwang ◽  
Si Huy Ngo

This paper presents the results of the experimental works to investigate the use of waste limestone from water treatment industry as fine aggregate in green concrete. Two concrete mixtures with a constant water-to-binder ratio of 0.3 were prepared for this investigation, in which, the normal concrete mixture was designed following the guidelines of ACI 211 standard, while the green concrete mixture was designed using densified mixture design algorithm (DMDA) technology. For comparison, both types of concrete samples were subjected to the same test program, including fresh properties, compressive strength, strength efficiency of cement, drying shrinkage, electrical surface resistivity, ultrasonic pulse velocity, and thermal conductivity. Test results indicate that both concrete mixtures showed the excellent workability due to the round-shape of waste limestone aggregate and the use of superplasticizer. In addition, the green concrete mixture exhibited a better performance in terms of engineering properties and durability in comparison with the normal concrete mixture. The results of the present study further support the recycling and reuse of waste limestone as fine aggregate in the production of green concrete.


2021 ◽  
Vol 21 (6) ◽  
pp. 209-215
Author(s):  
Yunje Lee ◽  
Jaehun Ahn ◽  
Yungtak Oh ◽  
Jaegeon Lee

The expansion of impervious areas owing to urbanization has adverse effects on water circulation. The application of low-impact development techniques to solve these problems is gaining popularity. Among others, Permeable pavements are the most widely employed low-impact development techniques. In this study, the dynamic modulus and tensile strength of pervious polymer concrete pavement were evaluated before and after freezing-thawing cycles. A tensile strength test, performed to check the soundness of the pervious polymer concrete, yielded a tensile strength and tensile strength ratio of 0.66 to 0.96 MPa, and 72 to 83%, respectively. The ultrasonic pulse velocity was measured to determine the dynamic modulus according to the freezing-thawing cycles. When 300 freezing-thawing cycles were performed, the dynamic modulus was analyzed to drop to a level of 77~85% of the initial value. The standards for freezing and thawing tests of pervious concrete have not yet been established. It is necessary to develop test standards for freezing-thawing resistance of pervious concretes considering climate change.


2020 ◽  
Vol 12 (1) ◽  
pp. 13-20
Author(s):  
Saad Issa Sarsam ◽  
Nazar Sajad Kadium

One of the major concerns of pavement durability is its susceptibility to moisture damage. In this investigation, non-destructive test NDT has been implemented to detect the moisture damage issue. Asphalt concrete specimens were prepared using the traditional Marshall method for wearing, binder and asphalt stabilized base course. Specimens were traversed by ultrasound pulse velocity before and after practicing the moisture damage procedure. The variation of dynamic and elastic modulus before and after the moisture damage was considered and related to tensile strength ratio TSR. It was noted that the pulse velocity decline by (11, 11.2 and 16.4) % and the dynamic modulus declines by (28, 6.6 and 28.5) % for asphalt concrete wearing, binder and base courses respectively after moisture damage. The elastic modulus exhibits no significant variation after moisture damage for wearing course while it declines by (9 and 11.7) % for binder and base courses respectively after moisture damage. It was concluded that the elastic and dynamic moduli were unable to clearly distinguish the impact of moisture damage, whereas the Seismic modulus calculated from the Ultrasonic Pulse Velocity test was effective in distinguishing such impact. The linear equation obtained with good coefficient of determination can explain 74 % of the variation in the seismic modulus after moisture damage.


2020 ◽  
Vol 862 ◽  
pp. 66-71
Author(s):  
Victor Hugo Blancas-Herrera ◽  
Wilfrido Martínez-Molina ◽  
Hugo Luis Chavez-Garcia ◽  
Jorge Alberto Pacheco-Segovia ◽  
Sandra del Carmen Argüello-Hernández ◽  
...  

The creation of sustainable hydraulic concrete from the use of waste materials, such as PET bottles, whose performance is better than the conventional concrete, has been a great challenge worldwide within the construction industry. This article shows a study on the application of PET fibers resulting from the recycling of post-consumer bottles, which will help increase their physical and mechanical behavior. Two concrete mixtures were made: a control mixture (M-C), with the proportions of a conventional concrete and a second mixture, adding 0.8% of PET fibers with respect to the cement mass (PR-0.8). Tests of electrical resistivity, ultrasonic pulse velocity, compressive strength, tensile strength and flexural strength were performed at the ages of 7 and 28 days. The results showed a slight improvement in the mechanical behavior of the PR-0.8 mixture, in contrast to the M-C mixture, given that a non-sudden failure occurs; while that the tests of electrical resistivity and pulse velocity indicate that the concrete produced is of good quality and durable.


2019 ◽  
Vol 292 ◽  
pp. 29-33
Author(s):  
Dalibor Kocáb ◽  
Petr Daněk ◽  
Petr Žítt ◽  
Aleš Tichý ◽  
Martin Alexa

The paper discusses the results of an experiment that focused on measuring Young's modulus in compression using several different specimens. They were made from lightweight concrete with porous aggregate and differed in shape (cylinder × prism), type (casting × core drilling), and size. Each type category counted a minimum of 6 specimens. The determination of Young's modulus was supplemented by a measurement of the dynamic modulus of elasticity determined by the ultrasonic pulse velocity test. The experiment was concluded by a statistical analysis of the measured values, which focused on the influence of each specimen variety on the value of the elastic modulus.


Sign in / Sign up

Export Citation Format

Share Document