Identifying the Impact of Low-Speed Vehicles on Freeway Capacity by Traffic Simulation

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Yu Shan ◽  
Huimin Yan ◽  
Xi Lin ◽  
Meng Li
2014 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Orian Welling ◽  
James Moss ◽  
John Williams ◽  
Nick Collings
Keyword(s):  

Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


2013 ◽  
Vol 797 ◽  
pp. 123-128
Author(s):  
Ming He Liu ◽  
Xiu Ming Zhang ◽  
Shi Chao Xiu

In the low-speed grinding process, the force generated when the wheel grinding the workpiece is the result of sliding friction, plough and cutting. While in the actual study, the cutting process has attracted extensive attention. Impact effect to the entire grinding process on the contact is ignored so that the error exists between the calculation grinding force and the measured grinding force. Basing on the shock effect to the grinding process, the paper divides the contact area into impact area and cutting area. And the model of impact load generated from single grit is built. Moreover, the grinding force theoretical calculation model and total grinding force mathematical model is also constructed by analyzing the impact load affecting on the grinding force mechanism. Finally experimental study verifies the correctness of theoretical analysis.


2021 ◽  
pp. 1-30
Author(s):  
Alejandro Castillo Pardo ◽  
Cesare A. Hall

Abstract Boundary Layer Ingestion (BLI) potentially offers significant reductions in fuel burn and pollutant emissions. The Propulsive Fuselage Concept features a fan at the back of the airframe that ingests the 360deg fuselage boundary layer. Consequently, the distortion at the fan face during cruise is close to radial. This paper aims to devise and test a fan design philosophy that is tuned to this inflow distortion. Initially a free-vortex fan design matched to clean inflow is presented. The effects of BLI on the aerodynamics of this fan are investigated. A series of design steps are then presented to develop the baseline fan into a new design matched to fuselage BLI inflow. Both fan designs have been tested within a low speed rig. The impact of the fan design changes on the aerodynamics and the performance with BLI are evaluated using the test results. This paper presents the successful application of a unique experimental facility for the analysis of BLI fuselage fans. It shows that it is possible to design a fan that accepts the radial distortion caused by fuselage BLI with a modified profile of work input. The new fan design was found to increase the work input by 4.9% and to improve the efficiency by 2.75% relative to a fan designed for clean flow. This new fan design has reduced loading near the hub to account for the incoming distortion, increased mid span loading and negative incidence towards the tip for tolerance to circumferential distortion off-design.


2009 ◽  
Vol 51 (3/4) ◽  
pp. 359
Author(s):  
Junghwa Hong ◽  
Sung Ki Min ◽  
Gwang Mun Eom ◽  
Byung Kyu Park ◽  
Soo Won Chae ◽  
...  

Author(s):  
Thomas S. Knudsen ◽  
Ole Groene ◽  
Per Soerensen

The Norwegian shipowner Odfjell has had more than one year’s experience of operating a vessel powered by an MAN B&W 6L60MC/ME low-speed engine capable of operating by electronic valve control, without a camshaft. During that period, the engine has run in both conventional and camless modes. Valuable data has been collected on the impact of camless engine technology, on operating performance, and on operating costs. Odfjell has now ordered a 7-cylinder S50ME-C engine, featuring electronic operation, for installation on a 37,500 dwt chemical tanker newbuilding.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1584-1591 ◽  
Author(s):  
HEON YOUNG KIM ◽  
JONG GIL CHOI ◽  
MIN GUN KIM ◽  
KANG WOOK LEE ◽  
DAE YUL HA ◽  
...  

We performed numerical analyses using an explicit code to evaluate the cumulative impact damage of an automotive aluminum front-end bumper back beam during low-speed crash events, as described by CMVSS215. we used a coupled numerical analysis scheme and considered the several fracture criterion such as EWK rupture model and plastic strain limit in the PAM-CRASH code to improve our damage and fracture estimates. Tensile test experiments for the notched and un-notched specimens were conducted to tune the performance of the EWK rupture model; The resulting material properties and fracture criterion were incorporated into the numerical analyses of the low-speed crash events. The simulation results were compared with the impact test.


Author(s):  
Bin Yu ◽  
Miyi Wu ◽  
Shuyi Wang ◽  
Wen Zhou

Connected vehicles (CVs) exchange a variety of information instantly with surrounding vehicles and traffic facilities, which could smooth traffic flow significantly. The objective of this paper is to analyze the effect of CVs on running speed. This study compared the delay time, travel time, and running speed in the normal and the connected states, respectively, through VISSIM (a traffic simulation software developed by PTV company in German). The optimization speed model was established to simulate the decision-makings of CVs in MATLAB, considering the parameters of vehicle distance, average speed, and acceleration, etc. After the simulation, the vehicle information including speed, travel time, and delay time under the normal and the connected states were compared and evaluated, and the influence of different CV rates on the results was analyzed. In a two-lane arterial road, running speed in the connected state increase by 4 km/h, and the total travel time and delay time decrease by 5.34% and 16.76%, respectively, compared to those in the normal state. The optimal CV market penetration rate related to running speed and delay time is 60%. This simulation-based study applies user-defined lane change and lateral behavior rules, and takes different CV rates into consideration, which is more reliable and practical to estimate the impact of CV on road traffic characteristics.


2020 ◽  
Author(s):  
Justin Brink ◽  
Scott Swinford ◽  
Christopher Furbish ◽  
Brian Jones ◽  
Judson Welcher ◽  
...  
Keyword(s):  

Author(s):  
Robert Ladouceur ◽  
Serge Sévigny

Video lotteries seem to be one of the most profitable games for the gambling industry and are reported as the game of choice for many problem gamblers. Their popularity or, in some cases, their addictiveness, might be related to their structural characteristics: reinforcement schedule, lights, appearance, sound, and speed. We investigated the effects of video lottery game speed on concentration, motivation to play, loss of control, and number of games played. Forty-three participants were randomly assigned to either a high-speed (5 seconds) or a low-speed (15 seconds) condition. Results: gamblers in the high-speed condition played more games and underestimated the number of games played more than did participants in the low-speed condition. However, speed did not influence concentration, motivation, or loss of control over time or money. Conclusion: speed has a limited impact on occasional video lottery gamblers. The theoretical and practical implications of speed are discussed in the context of responsible gambling policies.


Sign in / Sign up

Export Citation Format

Share Document