Role of Surface Active Media in Anaerobic Filters

1982 ◽  
Vol 108 (2) ◽  
pp. 269-285
Author(s):  
Khalique A. Khan ◽  
Makram T. Suidan ◽  
Wendall H. Cross
Keyword(s):  
1991 ◽  
Vol 56 (10) ◽  
pp. 1993-2008
Author(s):  
S. Hanafi ◽  
G. M. S. El-Shafei ◽  
B. Abd El-Hamid

The hydration of tricalcium silicate (C3S) with three grain sizes of monoclinic (M) and triclinic (T) modifications and on their thermally activated samples were investigated by exposure to water vapour at 80°C for 60 days. The products were investigated by XRD, TG and N2 adsorption. The smaller the particle size the greater was the hydration for both dried and activated samples from (M). In the activated samples a hydrate with 2θ values of 38.4°, 44.6° and 48.6° could be identified. Hydration increased with particle size for the unactivated (T) samples but after activation the intermediate size exhibited enhanced hydration. Thermal treatment at 950°C of (T) samples increased the surface active centers on the expense of those in the bulk. Changes produced in surface texture upon activation and/or hydration are discussed.


1993 ◽  
Vol 58 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Abd El-Aziz A. Said

Molybdenum oxide catalyst doped or mixed with (1 - 50) mole % Fe3+ ions were prepared. The structure of the original samples and the samples calcined at 400 °C were characterized using DTA, X-ray diffraction and IR spectra. Measurements of the electrical conductivity of calcined samples with and without isopropyl alcohol revealed that the conductance increases on increasing the content of Fe3+ ions up to 50 mole %. The activation energies of charge carriers were determined in presence and absence of the alcohol. The catalytic dehydration of isopropyl alcohol was carried out at 250 °C using a flow system. The results obtained showed that the doped or mixed catalysts are active and selective towards propene formation. However, the catalyst containing 40 mole % Fe3+ ions exhibited the highest activity and selectivity. Correlations were attempted to the catalyst composition with their electronic and catalytic properties. Probable mechanism for the dehydration process is proposed in terms of surface active sites.


2021 ◽  
pp. 111215
Author(s):  
Irena Ciglenečki ◽  
Palma Orlović-Leko ◽  
Kristijan Vidović ◽  
Viša Tasić

1946 ◽  
Vol 14 (3) ◽  
pp. 316-329 ◽  
Author(s):  
R. Aschaffenburg

As moderate dilution causes little change in the surface tension of milk, it is shown to be advantageous to use σ-dilution curves in place of the σ-values of the undiluted fluid as a characteristic of the surface properties of milk. The complications arising from the presence of the milk fat are described, and it is suggested that the influence of the fat is of a physical rather than of a chemical nature. A study of the role of the various milk proteins shows the casein to be of great importance, whilst the heat-coagulable proteins have little influence. The serum obtained after removal of the casein and heat-coagulable proteins contains a residual fraction of protein-like material which is markedly surface active though constituting only about 3% of the total milk proteins. The surface-active material (σ-proteose) has been concentrated and isolated, and its properties are described in some detail.


1975 ◽  
Vol 18 (12) ◽  
pp. 1729-1732
Author(s):  
A. A. Vorob'ev ◽  
V. D. Evseev

2020 ◽  
Vol 21 (19) ◽  
pp. 7004
Author(s):  
Sib Sankar Giri ◽  
Hyoun Joong Kim ◽  
Sang Guen Kim ◽  
Sang Wha Kim ◽  
Jun Kwon ◽  
...  

Microbial surfactants (biosurfactants) are a broad category of surface-active biomolecules with multifunctional properties. They self-assemble in aqueous solutions and are adsorbed on various interfaces, causing a decrease in surface tension, as well as interfacial tension, solubilization of hydrophobic compounds, and low critical micellization concentrations. Microbial biosurfactants have been investigated and applied in several fields, including bioremediation, biodegradation, food industry, and cosmetics. Biosurfactants also exhibit anti-microbial, anti-biofilm, anti-cancer, anti-inflammatory, wound healing, and immunomodulatory activities. Recently, it has been reported that biosurfactants can increase the immune responses and disease resistance of fish. Among various microbial surfactants, lipopeptides, glycolipids, and phospholipids are predominantly investigated. This review presents the various immunological activities of biosurfactants, mainly glycolipids and lipopeptides. The applications of biosurfactants in aquaculture, as well as their immunomodulatory activities, that make them novel therapeutic candidates have been also discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document