Nonpolymer new organic film for local insulation in laser‐direct‐writing circuit restructuring for large‐scale integrated circuits

1993 ◽  
Vol 62 (25) ◽  
pp. 3375-3376 ◽  
Author(s):  
Y. Seki ◽  
Y. Morishige ◽  
N. Wamme ◽  
Y. Ohnishi ◽  
S. Kishida
Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 910 ◽  
Author(s):  
Rongbo Wu ◽  
Min Wang ◽  
Jian Xu ◽  
Jia Qi ◽  
Wei Chu ◽  
...  

In this paper, we develop a technique for realizing multi-centimeter-long lithium niobate on insulator (LNOI) waveguides with a propagation loss as low as 0.027 dB/cm. Our technique relies on patterning a chromium thin film coated on the top surface of LNOI into a hard mask with a femtosecond laser followed by chemo-mechanical polishing for structuring the LNOI into the waveguides. The surface roughness on the waveguides was determined with an atomic force microscope to be 0.452 nm. The approach is compatible with other surface patterning technologies, such as optical and electron beam lithographies or laser direct writing, enabling high-throughput manufacturing of large-scale LNOI-based photonic integrated circuits.


Author(s):  
Rongbo Wu ◽  
Min Wang ◽  
Jian Xu ◽  
Jia Qi ◽  
Wei Chu ◽  
...  

We develop a technique for realizing lithium niobate on insulator (LNOI) waveguides of a multi-centimeter-length with a propagation loss as low as 0.027 dB/cm. Our technique relies on patterning a chromium (Cr) thin film coated on the top surface of LNOI into a hard mask with a femtosecond laser followed by the chemo-mechanical polishing for structuring the LNOI into the waveguides. The surface roughness on the waveguides is determined to be 0.452 nm with an atomic force microscope (AFM). The approach is compatible with other surface patterning technologies such as optical and electron beam lithographies or laser direct writing, enabling high-throughput manufacturing of large-scale LNOI-based photonic integrated circuits.


2016 ◽  
Vol 2 (11) ◽  
pp. e1601574 ◽  
Author(s):  
Xiao Dai ◽  
Jiang Wu ◽  
Zhicheng Qian ◽  
Haiyan Wang ◽  
Jie Jian ◽  
...  

Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantages inherited by the glassy graphene thin film from graphene and glassy carbon, the glassy graphene thin film exhibits conductivity, transparency, and flexibility comparable to those of graphene, as well as glassy carbon–like mechanical and chemical stability. Moreover, glassy graphene–based circuits are fabricated using a laser direct writing approach. The circuits are transferred to flexible substrates and are shown to perform reliably. The glassy graphene thin film should stimulate the application of flexible transparent conductive materials in integrated circuits.


2000 ◽  
Vol 624 ◽  
Author(s):  
D. J. Ehrlich ◽  
Richard Aucoin ◽  
M. J. Burns ◽  
Kenneth Nill ◽  
Scott Silverman

ABSTRACTLaser microchemical direct write deposition and etching methods have found an essential niche in debug and design for yield of wire-bonded and flip-chip integrated circuits. Future applications should develop in package-level system modification.


1987 ◽  
Vol 50 (15) ◽  
pp. 1016-1018 ◽  
Author(s):  
Jerry G. Black ◽  
Scott P. Doran ◽  
Mordechai Rothschild ◽  
Daniel J. Ehrlich

Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Sign in / Sign up

Export Citation Format

Share Document