Engineering carrier confinement potentials in 1.3-μm InAs/GaAs quantum dots with InAlAs layers: Enhancement of the high-temperature photoluminescence intensity

2003 ◽  
Vol 83 (18) ◽  
pp. 3716-3718 ◽  
Author(s):  
H. Y. Liu ◽  
I. R. Sellers ◽  
M. Hopkinson ◽  
C. N. Harrison ◽  
D. J. Mowbray ◽  
...  
2019 ◽  
Author(s):  
Aurelio A. Rossinelli ◽  
Henar Rojo ◽  
Aniket S. Mule ◽  
Marianne Aellen ◽  
Ario Cocina ◽  
...  

<div>Colloidal semiconductor nanoplatelets exhibit exceptionally narrow photoluminescence spectra. This occurs because samples can be synthesized in which all nanoplatelets share the same atomic-scale thickness. As this dimension sets the emission wavelength, inhomogeneous linewidth broadening due to size variation, which is always present in samples of quasi-spherical nanocrystals (quantum dots), is essentially eliminated. Nanoplatelets thus offer improved, spectrally pure emitters for various applications. Unfortunately, due to their non-equilibrium shape, nanoplatelets also suffer from low photo-, chemical, and thermal stability, which limits their use. Moreover, their poor stability hampers the development of efficient synthesis protocols for adding high-quality protective inorganic shells, which are well known to improve the performance of quantum dots. <br></div><div>Herein, we report a general synthesis approach to highly emissive and stable core/shell nanoplatelets with various shell compositions, including CdSe/ZnS, CdSe/CdS/ZnS, CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S, and CdSe/ZnSe. Motivated by previous work on quantum dots, we find that slow, high-temperature growth of shells containing a compositional gradient reduces strain-induced crystal defects and minimizes the emission linewidth while maintaining good surface passivation and nanocrystal uniformity. Indeed, our best core/shell nanoplatelets (CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S) show photoluminescence quantum yields of 90% with linewidths as low as 56 meV (19.5 nm at 655 nm). To confirm the high quality of our different core/shell nanoplatelets for a specific application, we demonstrate their use as gain media in low-threshold ring lasers. More generally, the ability of our synthesis protocol to engineer high-quality shells can help further improve nanoplatelets for optoelectronic devices.</div>


2020 ◽  
Vol 0 (4) ◽  
pp. 29-32
Author(s):  
B.M. GAREEV ◽  
◽  
A.M. ABDRAKHMANOV ◽  
G.L. SHARIPOV ◽  
◽  
...  

The photoluminescence of carbon quantum dots synthesized from natural honey and mixtures of honey and sugar has been studied. An increase in the sugar content leads to a decrease in the photoluminescence intensity without changing the shape of the luminescence spectrum of these quantum dots aqueous solutions, which is associated with a decrease in the yield of their synthesis in the sugar presence. The discovered effect can be used to detect sugar in honey. When examining five different market samples of flower honey using this method, two of them showed a significant decrease in the photoluminescence intensity. A laboratory test for compliance with GOST 19792-2017 Standard requirements established an excess of the sucrose content in these samples. Luminescent determination of sugar in honey does not require complicated equipment and can be used to develop a new analytical method for determining the sugar content in counterfeit natural honey.


2016 ◽  
Vol 16 (4) ◽  
pp. 3457-3467 ◽  
Author(s):  
Jigang Wang ◽  
Ji Zhou ◽  
Wenhua Zhou ◽  
Jilong Shi ◽  
Lun Ma ◽  
...  

Chemical derived graphene oxide, an atomically thin sheet of graphite with two-dimensional construction, offers interesting physical, electronic, thermal, chemical, and mechanical properties that are currently being explored for advanced physics electronics, membranes, and composites. Herein, we study graphene quantum dots (GQD) with the blue photoluminescence under various parameters. The GQD samples were prepared at different temperatures, and the blue photoluminescence intensity of the solution improved radically as the heating temperatures increased. Concerning PL peak and intensity of the quantum dots, the results demonstrated dependence on time under heating, temperature of heating, and pH adjusted by the addition of sodium hydroxide. After hydrothermal synthesis routes, the functional groups of graphene oxide were altered the morphology showed the stacking configuration, and self-assembled structure of the graphene sheets with obvious wrinkles appeared at the edge structures. In addition, absorption, PL, and PLE spectra of the graphene quantum dots increase with different quantities of sodium hydroxide added. Finally, using GQD to target PNTIA cells was carried out successfully. High uptake efficiency and no cytotoxic effects indicate graphene quantum dots can be suitable for bio-targeting.


2010 ◽  
Vol 96 (8) ◽  
pp. 083102 ◽  
Author(s):  
M. Riotte ◽  
E. Fohtung ◽  
D. Grigoriev ◽  
A. A. Minkevich ◽  
T. Slobodskyy ◽  
...  

2011 ◽  
Vol 54 (3) ◽  
pp. 215-219 ◽  
Author(s):  
Ajit V. Barve ◽  
John Montaya ◽  
Yagya Sharma ◽  
Thomas Rotter ◽  
Jiayi Shao ◽  
...  

2020 ◽  
Vol 29 (2) ◽  
pp. 026402 ◽  
Author(s):  
Shi-Hao Ruan ◽  
Chun-Miao Han ◽  
Fu-Lu Li ◽  
Bing Li ◽  
Bing-Bing Liu

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Tingting Zhang ◽  
Xugu Zhang ◽  
Peizhi Yang ◽  
Jinke Bai ◽  
Chun Chang ◽  
...  

Stable luminance properties are essential for light-emitting devices with excellent performance. Thermal photoluminescence (PL) quenching of quantum dots (QDs) under a high temperature resulting from a surface hole or electron traps will lead to unstable and dim brightness. After treating CdZnSe/ZnSe QDs with TBP, which is a well-known passivation reagent of the anions, the excess Se sites on the surface of the QDs were removed and their PL quantum yields (QYs) was improved remarkable. Furthermore, after TBP treatment, the CdZnSe/ZnSe QDs exhibit no quenching phenomena even at a high temperature of 310°C. The electroluminescent light-mitting diodes based on the QDs with TBP treatment also demonstrated satisfied performance with a maximum current density of 1679.6 mA/cm2, a peak luminance of 89500 cd/m2, and the maximum values of EQE and luminescence efficiency are 15% and 14.9 cd/A, respectively. The performance of the fabricated devices can be further improved providing much more in-depth studies on the CdZnSe/ZnSe QDs.


2010 ◽  
Author(s):  
J. Ehehalt ◽  
C. Neugirg ◽  
R. Schuster ◽  
D. Schuh ◽  
W. Wegscheider ◽  
...  

2005 ◽  
Vol 891 ◽  
Author(s):  
Shin-ichiro Uekusa ◽  
Kunitoshi Aoki ◽  
Mohammad Zakir Hossain ◽  
Tomohiro Fukuda ◽  
Noboru Miura

ABSTRACTWe prepared β-FeSi2 thin-films by using a Pulsed Laser Deposition (PLD) method and succeeded to observe photoluminescence (PL) around 1.5 μm corresponding to β-FeSi2 band from the long-time and high-temperature annealed β-FeSi2 thin-films. The β-FeSi2 thin-films were ablated on Si(111) substrates heated at 550°C. After ablation, long-time and high-temperature thermal annealing was performed in order to improve the crystal-quality. Annealing times were 5, 10, 20 and 40 hrs, and annealing temperature was kept at 900 °C. Crystallinity was evaluated by an X-ray diffraction (XRD) measurement. We have observed eminent improvement on crystal-quality of β-FeSi2 thin-films. Annealed samples show (220) or (202) X-ray diffraction signals of β-FeSi2 and the full width at half maximum (FWHM) of these peaks were 0.27° although the thickness of the samples decreased with annealing time. Thermal-diffusion of Si atoms was observed from substrate to thin-films. Fe atoms in the ablated thin-films also diffused into the substrate. The relationship between the thickness of β-FeSi2 thin-films and the thermal-diffusion were investigated with rutherford backscattering (RBS) measurement. Maximum photoluminescence intensity around 1.5 μm was observed from the thickest β-FeSi2 thin-film with only 5 hrs annealing.


Sign in / Sign up

Export Citation Format

Share Document