Low Temperature Relay Modulator for Thermal and Electrical Conductivity Measurements

1967 ◽  
Vol 38 (3) ◽  
pp. 428-429 ◽  
Author(s):  
M. H. Jericho ◽  
R. H. March
2000 ◽  
Vol 14 (25n27) ◽  
pp. 2676-2681
Author(s):  
L. MALAVASI ◽  
P. GHIGNA ◽  
G. FLOR ◽  
G. SPINOLO

We present here non-stoichiometry and electrical conductivity measurements in the low-T and high-T range for the Eu1+xBa2-xCu3Oysystem with x=0, 0.2 and 0.4. We found an anomalous trend of the Tcwith y for EuBa2Cu3Oy(Eu-123) relative to other HTSC of REBa2Cu3Oyfamily (RE=Y, Nd, Sm). On the contrary high-T data for the whole system show a behavior similar to that of others RE-123.


1970 ◽  
Vol 48 (1) ◽  
pp. 63-69 ◽  
Author(s):  
F. L. Weichman ◽  
R. Kužel

A series of conductivity measurements were made on single crystals of Cu2O from 20 to 840 °C to explain the various activation energies which appear at different temperatures and oxygen pressures. Crystals were annealed in the 10−8 and 10−4 Torr region in the stability ranges of Cu2O, Cu, and CuO at various temperatures. For the low-temperature activation energies ranging from 0.60 to 0.26 eV, an excellent agreement with the empirical Meyer–Neldel rule was found. The highest activation energy of 1.12 eV in the 570 to 680 °C range at 10−8 Torr is associated with the boundary between the two stable phases Cu and Cu2O. The changes in defect concentration are ascribed to the mechanism of self-compensation. The energy-level diagram proposed by Bloem is adequate to explain the present results.


1991 ◽  
Vol 18 (3) ◽  
pp. 611-627 ◽  
Author(s):  
Marta L. Fiorotto ◽  
William J. Klish

2019 ◽  
Vol 104 (12) ◽  
pp. 1800-1805
Author(s):  
George M. Amulele ◽  
Anthony W. Lanati ◽  
Simon M. Clark

Abstract Starting with the same sample, the electrical conductivities of quartz and coesite have been measured at pressures of 1, 6, and 8.7 GPa, respectively, over a temperature range of 373–1273 K in a multi-anvil high-pressure system. Results indicate that the electrical conductivity in quartz increases with pressure as well as when the phase change from quartz to coesite occurs, while the activation enthalpy decreases with increasing pressure. Activation enthalpies of 0.89, 0.56, and 0.46 eV, were determined at 1, 6, and 8.7 GPa, respectively, giving an activation volume of –0.052 ± 0.006 cm3/mol. FTIR and composition analysis indicate that the electrical conductivities in silica polymorphs is controlled by substitution of silicon by aluminum with hydrogen charge compensation. Comparing with electrical conductivity measurements in stishovite, reported by Yoshino et al. (2014), our results fall within the aluminum and water content extremes measured in stishovite at 12 GPa. The resulting electrical conductivity model is mapped over the magnetotelluric profile obtained through the tectonically stable Northern Australian Craton. Given their relative abundances, these results imply potentially high electrical conductivities in the crust and mantle from contributions of silica polymorphs. The main results of this paper are as follows:The electrical conductivity of silica polymorphs is determined by impedance spectroscopy up to 8.7 GPa.The activation enthalpy decreases with increasing pressure indicating a negative activation volume across the silica polymorphs.The electrical conductivity results are consistent with measurements observed in stishovite at 12 GPa.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


Sign in / Sign up

Export Citation Format

Share Document