Exact Navier-Stokes Solutions Including Swirl and Cross Flow

1967 ◽  
Vol 10 (7) ◽  
pp. 1438 ◽  
Author(s):  
Sheldon Weinbaum
Keyword(s):  
Author(s):  
Elisabeth Longatte

This work is concerned with the modelling of the interaction of a fluid with a rigid or a flexible elastic cylinder in the presence of axial or cross-flow. A partitioned procedure is involved to perform the computation of the fully-coupled fluid solid system. The fluid flow is governed by the incompressible Navier-Stokes equations and modeled by using a fractional step scheme combined with a co-located finite volume method for space discretisation. The motion of the fluid domain is accounted for by a moving mesh strategy through an Arbitrary Lagrangian-Eulerian (ALE) formulation. Solid dyncamics is modeled by a finite element method in the linear elasticity framework and a fixed point method is used for the fluid solid system computation. In the present work two examples are presented to show the method robustness and efficiency.


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


2014 ◽  
Vol 16 (5) ◽  
pp. 901-918 ◽  

<div> <p>Three-dimensional calculations were performed to simulate the flow around a cylindrical vegetation element using the Scale Adaptive Simulation (SAS) model; commonly, this is the first step of the modeling of the flow through multiple vegetation elements. SAS solves the Reynolds Averaged Navier-Stokes equations in stable flow regions, while in regions with unstable flow it goes unsteady producing a resolved turbulent spectrum after reducing eddy viscosity according to the locally resolved vortex size represented by the von Karman length scale. A finite volume numerical code was used for the spatial discretisation of the rectangular computational domain with stream-wise, cross-flow and vertical dimensions equal to 30D, 11D and 1D, respectively, which was resolved with unstructured grids. Calculations were compared with experiments and Large Eddy Simulations (LES). Predicted overall flow parameters and mean flow velocities exhibited a very satisfactory agreement with experiments and LES, while the agreement of predicted turbulent stresses was satisfactory. Calculations showed that SAS is an efficient and relatively fast turbulence modeling approach, especially in relevant practical problems, in which the very high accuracy that can be achieved by LES at the expense of large computational times is not required.</p> </div> <p>&nbsp;</p>


Author(s):  
Karim M. Ali ◽  
Mohamed Madbouli ◽  
Hany M. Hamouda ◽  
Amr Guaily

This work introduces an immersed boundary method for two-dimensional simulation of incompressible Navier-Stokes equations. The method uses flow field mapping on the immersed boundary and performs a contour integration to calculate immersed boundary forces. This takes into account the relative location of the immersed boundary inside the background grid elements by using inverse distance weights, and also considers the curvature of the immersed boundary edges. The governing equations of the fluid mechanics are solved using a Galerkin-Least squares finite element formulation. The model is validated against a stationary and a vertically oscillating circular cylinder in a cross flow. The results of the model show acceptable accuracy when compared to experimental and numerical results.


Author(s):  
Hironobu Yamakawa

Cross flow fans are used for fan systems in a household room air conditioner indoor unit. In recently, in the view of environmental problem and cost saving, energy saving performance is important specification for users. Reducing fan motor electric power consumption is effective for this purpose. And also low noise fans are needed for comfortable circumferences. To meet these user needs, we developed a high efficiency and silent cross flow fan using CFD (Computational Fluid Dynamics) and experiments. In CFD, numerical model is calculated by commercial software using steady state, Reynolds-averaged Navier-Stokes (RANS) and k-ε turbulent flow model. The developed cross flow fan is geometrically characterized by the solidity (the ratio of the blade pitch and blade cord length) distribution, and the blade edge shape. The solidity average of developed fan was larger than the conventional fan and the solidity distribution was smooth. And the developed fan has the sinusoidal shape of the outer diameter edge. This sinusoidal shape edge makes pressure distribution on the tongue to be more dispersed compare to that of conventional straight edge so that tonal noise was restrained.


Author(s):  
Andrew P. S. Wheeler ◽  
Richard D. Sandberg

In this paper we use direct numerical simulation to investigate the unsteady flow over a model turbine blade-tip at engine scale Reynolds and Mach numbers. The DNS is performed with a new in-house multi-block structured compressible Navier-Stokes solver purposely developed for exploiting high-performance computing systems. The particular case of a transonic tip flow is studied since previous work has suggested compressibility has an important influence on the turbulent nature of the separation bubble at the inlet to the gap and subsequent flow reattachment. The effects of free-stream turbulence, cross-flow and pressure-side boundary-layer on the tip flow aerodynamics and heat transfer are investigated. For ‘clean’ in-flow cases we find that even at engine scale Reynolds numbers the tip flow is intermittent in nature (neither laminar nor fully turbulent). The breakdown to turbulence occurs through the development of spanwise modes with wavelengths around 25% of the gap height. Cross-flows of 25% of the streamwise gap exit velocity are found to increase the stability of the tip flow, and to significantly reduce the turbulence production in the separation bubble. This is predicted through in-house linear stability analysis, and confirmed by the DNS. For the case when the inlet flow has free-stream turbulence, viscous dissipation and the rapid acceleration of the flow at the inlet to the tip-gap causes significant distortion of the vorticity field and reductions of turbulence intensity as the flow enters the tip gap. This means that only very high turbulence levels at the inlet to the computational domain significantly affect the tip heat transfer. The DNS results are compared with RANS predictions using the Spalart-Allmaras and k–ω SST turbulence models. The RANS and DNS predictions give similar qualitative features for the tip flow, but the size and shape of the inlet separation bubble and shock positions differ noticeably. The RANS predictions are particularly insensitive to free-stream turbulence.


Author(s):  
Omid Abouali ◽  
Mohammad M. Alishahi ◽  
Homayoon Emdad ◽  
Goodarz Ahmadi

A 3-D Thin Layer Navier-Stokes (TLNS) code for solving viscous supersonic flows is developed. The new code uses several numerical algorithms for space and time discretization together with appropriate turbulence modeling. Roe’s method is used for discretizing the convective terms and the central differencing scheme is employed for the viscous terms. An explicit time marching technique and a finite volume space discretization are used. The developed computational model can handle both laminar and turbulent flows. The Baldwin-Lomax model and Degani-Schiff modifications are used for turbulence modeling. The computational model is applied to a hypersonic laminar flow at Mach 7.95 around a cone at different incidence angles. The circumferential pressure distribution is compared with the experimental data. The cross-sectional Mach number contours are also presented. It is shown that in addition to the outer shock, a cross-flow shock wave is also present in the flow field. The cases of supersonic turbulent flows with Mach number 3 around a tangent-ogive with incidence angles of 6° and a secant-ogive with incidence angles of 10° are also studied. The circumferential pressure distributions are compared with the experimental data and the Euler code results and good agreement is obtained. The cross-sectional Mach number contours are also presented. It is shown that in this case also in addition to the outer shock, a cross-flow shock wave is also present at the incidence angle of 10°.


Author(s):  
Charles M. Dai ◽  
Ronald W. Miller

This paper reports on the comparison between computational simulations and experimental measurements of a surface vessel in steady turning conditions. The primary purpose of these efforts is to support the development of physics-based high fidelity maneuvering simulation tools by providing accurate and reliable hydrodynamic data with relevance to maneuvering performances. Reynolds Averaged Unsteady Navier Stokes Solver (URANS): CFDSHIPIOWA was used to perform simulations for validation purposes and for better understanding of the fundamental flow physics of a hull under maneuvering conditions. The Propeller effects were simulated using the actuator disk model included in CFDShip-Iowa. The actuator disk model prescribes a circumferential averaged body force with axial and tangential components. No propeller generated side forces are accounted for in the model. This paper examines the effects of actuator disk model on the overall fidelity of a RANS based ship maneuvering simulations. Both experiments and simulations provide physical insights into the complex flow interactions between the hull and various appendages, the rudders and the propellers. The experimental effort consists of flow field measurements using Stereo Particle-Image Velocimetry (SPIV) in the stern region of the model and force and moment measurements on the whole ship and on ship components such as the bilge keels, the rudders, and the propellers. Comparisons between simulations and experimental measurements were made for velocity distributions at different transverse planes along the ship axis and different forces components for hull, appendages and rudders. The actuator disk model does not predict any propeller generated side forces in the code and they need to be taken into account when comparing hull and appendages generated side forces in the simulations. The simulations were compared with experimental results and they both demonstrate the cross flow effect on the transverse forces and the propeller slip streams generated by the propellers during steady turning conditions. The hull forces (include hull, bilge keels, skeg, shafting and strut) predictions were better for large turning circle case as compared with smaller turning circle. Despite flow field simulations appear to capture gross flow features qualitatively; detailed examinations of flow distributions reveal discrepancies in predictions of propeller wake locations and secondary flow structures. The qualitative comparisons for the rudders forces also reveal large discrepancies and it was shown that the primary cause of discrepancies is due to poor predictions of velocity inflow at the rudder plane.


2013 ◽  
Vol 80 (3) ◽  
Author(s):  
D. Klatt ◽  
R. Hruschka ◽  
F. Leopold

The Magnus effect on a generic 6.37 diameter long tangential-ogive-cylinder type projectile was studied by means of 3D Reynolds-averaged Navier–Stokes (RANS) simulations and wind tunnel measurements. The nominal Mach number was 3 and the Reynolds number, based on the model length, was 1.09 × 107. The simulations provided a profound insight into the flow structure and revealed a shift of the cross-flow separation lines as a consequence of the spin. This was shown to be the primary source of the Magnus side force for the higher angles of attack in the investigated range. The nonlinear dependence of the Magnus side force on the angle of attack was analyzed and reached a maximum value between 10 and 15 deg before decreasing again. The occurrence of secondary vortices in this range of angles of attack is presented as an explanation for a locally negative Magnus side force portion acting on the model.


Author(s):  
Abdul Motin ◽  
Volodymyr V. Tarabara ◽  
André Bénard

This research addresses various hydrodynamic aspects and the separation performance of a novel cross-flow filtration hydrocyclone (CFFH) using computational fluid dynamics. A CFFH is a device that combines the desirable attributes of a cross-flow filter and a vortex separator into one unit to separate oil from water. The velocity and pressure fields within the CFFH are estimated by numerically solving the filtered Navier-Stokes equations (by using a Large Eddy Simulation (LES) approach). The Lagrangian approach is employed for investigating the trajectories of dispersed droplets based on a stochastic tracking method called the Discrete Phase Model (DPM). The mixture theory with the Algebraic Slip Model (ASM) is also used to compute the dispersed phase fluid mechanics and for comparing with results obtained from the DPM. In addition, a comparison between the statistically steady state results obtained by the LES with the Wall Adaptive Local Eddy-Viscosity (WALE) subgrid scale model and the Reynolds Average Navier-Stokes (RANS) closed with the Reynolds Stress Model (RSM) is performed for evaluating their capabilities with regards to the flow field within the CFFH and the impact of the filter medium. Effects of the Reynolds number, the permeability of the porous filter, and droplet size on the internal hydrodynamics and separation performance of the CFFH are investigated. Results indicate that for low feed concentration of the dispersed phase, separation efficiency obtained based on multiphase and discrete phase simulations is almost the same. Higher Reynolds number flow simulations exhibit an unstable core and thereby numerous recirculation zones in the flow field are observed. Improved separation efficiency is observed at a lower Reynolds number and for a lower permeability of the porous filter.


Sign in / Sign up

Export Citation Format

Share Document