Formation mechanism and optical properties of nanocrystalline silicon in silicon oxide

2005 ◽  
Vol 98 (1) ◽  
pp. 014303 ◽  
Author(s):  
Jong Hoon Kim ◽  
Kyung Ah Jeon ◽  
Sang Yeol Lee
1977 ◽  
Vol 26 (1) ◽  
pp. 129-131
Author(s):  
N. N. Gerasimenko ◽  
T. I. Kovalevskaya ◽  
V. G. Pan'kin ◽  
K. K. Svitashev ◽  
G. M. Tseitlin

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Ktifa ◽  
M. Ghrib ◽  
F. Saadallah ◽  
H. Ezzaouia ◽  
N. Yacoubi

We have studied the optical properties of nanocrystalline silicon (nc-Si) film deposited by plasma enhancement chemical vapor deposition (PECVD) on porous aluminum structure using, respectively, the Photothermal Deflection Spectroscopy (PDS) and Photoluminescence (PL). The aim of this work is to investigate the influence of anodisation current on the optical properties of the porous aluminum silicon layers (PASL). The morphology characterization studied by atomic force microscopy (AFM) technique has shown that the grain size of (nc-Si) increases with the anodisation current. However, a band gap shift of the energy gap was observed.


2017 ◽  
Vol 706 ◽  
pp. 289-296 ◽  
Author(s):  
Meinan Wan ◽  
Baoshun Liu ◽  
Shuo Wang ◽  
Lingting Hu ◽  
Youjia He ◽  
...  

2017 ◽  
Vol 25 (4) ◽  
pp. 850-856
Author(s):  
李晓苇 LI Xiao-wei ◽  
李云 LI Yun ◽  
郑燕 ZHENG Yan ◽  
高东泽 GAO Dong-ze ◽  
于威 YU Wei

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 759
Author(s):  
Luana Mazzarella ◽  
Anna Morales-Vilches ◽  
Lars Korte ◽  
Rutger Schlatmann ◽  
Bernd Stannowski

Doped hydrogenated nanocrystalline (nc-Si:H) and silicon oxide (nc-SiOx:H) materials grown by plasma-enhanced chemical vapor deposition have favourable optoelectronic properties originated from their two-phase structure. This unique combination of qualities, initially, led to the development of thin-film Si solar cells allowing the fabrication of multijunction devices by tailoring the material bandgap. Furthermore, nanocrystalline silicon films can offer a better carrier transport and field-effect passivation than amorphous Si layers could do, and this can improve the carrier selectivity in silicon heterojunction (SHJ) solar cells. The reduced parasitic absorption, due to the lower absorption coefficient of nc-SiOx:H films in the relevant spectral range, leads to potential gain in short circuit current. In this work, we report on development and applications of hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) from material to device level. We address the potential benefits and the challenges for a successful integration in SHJ solar cells. Finally, we prove that nc-SiOx:H demonstrated clear advantages for maximizing the infrared response of c-Si bottom cells in combination with perovskite top cells.


Sign in / Sign up

Export Citation Format

Share Document