Undoped high mobility two-dimensional hole-channel GaAs∕AlxGa1−xAs heterostructure field-effect transistors with atomic-layer-deposited dielectric

2007 ◽  
Vol 90 (11) ◽  
pp. 112113 ◽  
Author(s):  
T. M. Lu ◽  
D. R. Luhman ◽  
K. Lai ◽  
D. C. Tsui ◽  
L. N. Pfeiffer ◽  
...  
Author(s):  
Tien Dat Ngo ◽  
Min Sup Choi ◽  
Myeongjin Lee ◽  
Fida Ali ◽  
Won Jong Yoo

A technique to form the edge contact in two-dimensional (2D) based field-effect transistors (FETs) has been intensively studied for the purpose of achieving high mobility and also recently overcoming the...


2017 ◽  
Vol 8 ◽  
pp. 467-474 ◽  
Author(s):  
Gabriele Fisichella ◽  
Stella Lo Verso ◽  
Silvestra Di Marco ◽  
Vincenzo Vinciguerra ◽  
Emanuela Schilirò ◽  
...  

Graphene is an ideal candidate for next generation applications as a transparent electrode for electronics on plastic due to its flexibility and the conservation of electrical properties upon deformation. More importantly, its field-effect tunable carrier density, high mobility and saturation velocity make it an appealing choice as a channel material for field-effect transistors (FETs) for several potential applications. As an example, properly designed and scaled graphene FETs (Gr-FETs) can be used for flexible high frequency (RF) electronics or for high sensitivity chemical sensors. Miniaturized and flexible Gr-FET sensors would be highly advantageous for current sensors technology for in vivo and in situ applications. In this paper, we report a wafer-scale processing strategy to fabricate arrays of back-gated Gr-FETs on poly(ethylene naphthalate) (PEN) substrates. These devices present a large-area graphene channel fully exposed to the external environment, in order to be suitable for sensing applications, and the channel conductivity is efficiently modulated by a buried gate contact under a thin Al2O3 insulating film. In order to be compatible with the use of the PEN substrate, optimized deposition conditions of the Al2O3 film by plasma-enhanced atomic layer deposition (PE-ALD) at a low temperature (100 °C) have been developed without any relevant degradation of the final dielectric performance.


Sign in / Sign up

Export Citation Format

Share Document