Nonpolar 4H-AlN grown on 4H-SiC (11¯00) with reduced stacking fault density realized by persistent layer-by-layer growth

2008 ◽  
Vol 93 (8) ◽  
pp. 082106 ◽  
Author(s):  
Masahiro Horita ◽  
Tsunenobu Kimoto ◽  
Jun Suda
1993 ◽  
Vol 319 ◽  
Author(s):  
C. Frigeri ◽  
G. Atrolini ◽  
C. Pelosi ◽  
F. Longo

AbstractTwo regimes of defect generation have been found in MOVPE GaAs/Ge layers upon changing the V/III ratio between 1.3 and 11.8. For low V/III ratio the layers contained misfit dislocations along with stacking faults that had been generated by dissociation of the misfit dislocations. The stacking fault density increased with decreasing V/III ratio. This might be explained by an enhanced mobility of the dissociated partials due the reduced unintentional doping of the layer caused by reduced Ge outdiffusion from the substrate when V/III is small. The secon regime corresponds to high V/III ratios and is characterized by the absence of misfit dislocations and the presence of a high density of planar defects. This means that breakdown of the 2D layer-by-layer growth occurred and 3D island growth prevailed.


1995 ◽  
Vol 399 ◽  
Author(s):  
Frank Tsui ◽  
Joanne Wellman ◽  
Ctirad Uher ◽  
Roy Clarke

ABSTRACTWe report a global morphological transition in the nucleation and growth of epitaxial Rh (111). The transition occurs near 600 K, about 1/4 of the Rh melting temperature, and is signaled by a change in the shape of the surface features from fingered to compact. The transition appears to be related to a change in the critical nucleation size from 1 to 2 atoms. On both sides of the transition, there lies a regime of persistent layer-by-layer growth indicated by a minimum in surface roughness and by the presence of RHEED oscillations. The general surface features exhibit well defined length scales that are not self-affine, and as growth proceeds they increase in size following a power-law dependence on film thickness with a temperature-independent exponent of 0.33 ± 0.03. The results suggest a general pathway to the layer-by-layer growth of close-packed metals.


2012 ◽  
Vol 6 (11) ◽  
pp. 433-435 ◽  
Author(s):  
Jan Zippel ◽  
Michael Lorenz ◽  
Gabriele Benndorf ◽  
Marius Grundmann

2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


2020 ◽  
Vol 11 (24) ◽  
pp. 10548-10551
Author(s):  
Aswani Sathish Lathika ◽  
Shammi Rana ◽  
Anupam Prasoon ◽  
Pooja Sindhu ◽  
Debashree Roy ◽  
...  

2003 ◽  
Vol 42 (Part 2, No. 5A) ◽  
pp. L445-L447 ◽  
Author(s):  
Norio Onojima ◽  
Jun Suda ◽  
Hiroyuki Matsunami

1994 ◽  
Vol 341 ◽  
Author(s):  
E. S. Hellman ◽  
E. H. Hartford

AbstractMetastable solid-solutions in the MgO-CaO system grow readily on MgO at 300°C by molecular beam epitaxy. We observe RHEED oscillations indicating a layer-by-layer growth mode; in-plane orientation can be described by the Matthews theory of island rotations. Although some films start to unmix at 500°C, others have been observed to be stable up to 900°C. The Mgl-xCaxO solid solutions grow despite a larger miscibility gap in this system than in any system for which epitaxial solid solutions have been grown. We describe attempts to use these materials as adjustable-lattice constant epitaxial building blocks


Sign in / Sign up

Export Citation Format

Share Document