Intrinsic stress in thin films deposited on anisotropic substrates and its influence on the natural frequencies of piezoelectric resonators

1981 ◽  
Vol 52 (9) ◽  
pp. 5614-5624 ◽  
Author(s):  
H. F. Tiersten ◽  
B. K. Sinha ◽  
T. R. Meeker
2013 ◽  
Vol 802 ◽  
pp. 47-52
Author(s):  
Chuleerat Ibuki ◽  
Rachasak Sakdanuphab

In this work the effects of amorphous (glass) and crystalline (Si) substrates on the structural, morphological and adhesion properties of CoFeB thin film deposited by DC Magnetron sputtering were investigated. It was found that the structure of a substrate affects to crystal formation, surface morphology and adhesion of CoFeB thin films. The X-Ray diffraction patterns reveal that as-deposited CoFeB thin film at low sputtering power was amorphous and would become crystal when the power increased. The increase in crystalline structure of CoFeB thin film is attributed to the crystalline substrate and the increase of kinetic energy of sputtering atoms. Atomic Force Microscopy images of CoFeB thin film clearly show that the roughness, grain size, and uniformity correlate to the sputtering power and the structure of substrate. The CoFeB thin film on glass substrate shows a smooth surface and a small grain size whereas the CoFeB thin film on Si substrate shows a rough surface and a slightly increases of grain size. Sticky Tape Test on CoFeB thin film deposited on glass substrate indicates the adhesion failure with a high sputtering power. The results suggest that the crystalline structure of substrate affects to the atomic bonding and the sputtering power affects to intrinsic stress of CoFeB thin film.


2019 ◽  
Vol 181 ◽  
pp. 108063 ◽  
Author(s):  
Fakhrodin Motazedian ◽  
Zhigang Wu ◽  
Junsong Zhang ◽  
Bashir Samsam Shariat ◽  
Daqiang Jiang ◽  
...  

1991 ◽  
Vol 239 ◽  
Author(s):  
A. Mutscheller ◽  
L. A. Clevenger ◽  
J.M.E. Harper ◽  
C. Cabrai ◽  
K. Barmakt

AbstractWe demonstrate that the high temperature polymorphic tantalum phase transition from the tetragonal beta phase to the cubic alpha phase causes complete stress relaxation and a large decrease in the resistance of tantalum thin films. 100 nm beta tantalum thin films were deposited onto thermally oxidized <100> silicon wafers by dc magnetron sputtering with argon. In situ stress and resistance at temperature were measured during temperature-ramped annealing in purified He. Upon heating, films that were initially compressively stressed showed increasing compressive stress due to thermo-elastic deformation from 25 to 550°C, slight stress relief due to plastic deformation from 550 to 700°C and complete stress relief due to the beta to alpha phase transformation at approximately 700–800°C. Incomplete compressive stress relaxation was observed at high temperatures if the film was initially deposited in the alpha phase or if the beta phase did not completely transform into alpha by 800°C. This incomplete beta to alpha phase transition was most commonly observed on samples that had radio frequency substrate bias greater than -100 V. We conclude that the main stress relief mechanism for tantalum thin films is the beta to alpha phase transformation that occurs at 700 to 800°C.


1995 ◽  
Vol 403 ◽  
Author(s):  
L. Doucet ◽  
A. Brun ◽  
H. Jaouen ◽  
M. Dupeux ◽  
M. Ignat

AbstractThe stress behavior of two structures (Ti/Al-0.5%Cu/TiN and TiN/W) has been analyzed versus temperature up to 400 °C using the Flexus measurement system. Microstructure modifications induce stress variations with temperature. Furthermore, stress relaxation after annealing has been investigated. Al-based metallization stress is essentially due to thermal issues and reaches rapidly its yield strength whereas the W film exhibits high intrinsic stress. Microstructural observations afte deposition and after annealing have been conducted using a non destructive technique, the Thermal Wave Imager.


1976 ◽  
Vol 13 (1) ◽  
pp. 99-101 ◽  
Author(s):  
H. C. Tong ◽  
C. M. Lo ◽  
W. F. Traber

2003 ◽  
Vol 795 ◽  
Author(s):  
Aaron J. Chalekian ◽  
Roxann L. Engelstad ◽  
Edward G. Lovell

ABSTRACTAccurate mechanical properties of thin films are essential for viable design and fabrication of semiconductor devices and microelectromechanical systems. Relevant properties of thin films such as intrinsic stress, biaxial modulus, and fracture strength can be significantly different than their corresponding bulk values, and much more difficult to measure. However, such data can be obtained from the pressure-deflection response of clamped freestanding membranes, i.e., the so-called pressure-bulge test. Experimental challenges include membrane leakage prevention, ensuring proper structural boundary conditions, and accurately measuring applied pressure and transverse displacements simultaneously. In addition to these issues, most previously-developed pressure-bulge instruments rely on vacuum pump loadings. Such tools are limited by the one-atmosphere differential pressure over the membrane, which is inadequate for burst testing of high-strength films. Consequently, an enhanced pressure-bulge tool has been developed and will be described in this paper. It incorporates positive pressure to overcome the one-atmosphere load limitation, improved edge constraints, and the ability to test an array of membrane windows across a single substrate.


Sign in / Sign up

Export Citation Format

Share Document