Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod

2010 ◽  
Vol 108 (12) ◽  
pp. 124312 ◽  
Author(s):  
Zhengzheng Shao ◽  
Liaoyong Wen ◽  
Dongmin Wu ◽  
Xueao Zhang ◽  
Shengli Chang ◽  
...  
2011 ◽  
Vol 694 ◽  
pp. 23-27
Author(s):  
Zheng Zheng Shao ◽  
Xue Ao Zhang ◽  
Fei Wang ◽  
Guang Wang ◽  
Hong Hui Jia ◽  
...  

The piezoelectric potential generated in a bent ZnO nanorod cantilever is analyzed by means of the first piezoelectric effect approximation. The results show that the piezoelectric potential in the nanorod is proportional to lateral force but is independent along the longitudinal direction. And the electric potential in the tensile area and that of compressive area are antisymmetric in cross section of the nanorod, which makes the nanorod become a "parallel plated capacitor" for piezoelectric nanodevices, such as nanogenerator. The investigation of the carriers influence on the piezoelectric potential in a bent ZnO nanorod reveals that the positive piezoelectric potential in stretched side of the bent nanorod is significantly screened by the carriers and the negative potential in compressed side is well preserved when considering a moderate carrier concentration of


Nanoscale ◽  
2013 ◽  
Vol 5 (7) ◽  
pp. 2938 ◽  
Author(s):  
Tengfei Jiang ◽  
Tengfeng Xie ◽  
Liping Chen ◽  
Zewen Fu ◽  
Dejun Wang

2011 ◽  
Author(s):  
A. M. C. Ng ◽  
X. Y. Chen ◽  
F. Fang ◽  
A. B. Djurišić ◽  
W. K. Chan ◽  
...  

2010 ◽  
Vol 43 (24) ◽  
pp. 245403 ◽  
Author(s):  
Z Z Shao ◽  
L Y Wen ◽  
D M Wu ◽  
X F Wang ◽  
X A Zhang ◽  
...  

2003 ◽  
Vol 763 ◽  
Author(s):  
H. W. Lee ◽  
Y. G. Wang ◽  
S. P. Lau ◽  
B. K. Tay

AbstractA detailed study of zinc oxide (ZnO) films prepared by filtered cathodic vacuum arc (FCVA) technique was carried out. To deposit the films, a pure zinc target was used and O2 was fed into the chamber. The electrical properties of both undoped and Al-doped ZnO films were studied. For preparing the Al-doped films, a Zn-Al alloy target with 5 wt % Al was used. The resistivity, Hall mobility and carrier concentration of the samples were measured. The lowest resistivity that can be achieved with undoped ZnO films was 3.4×10-3 Ωcm, and that for Al-doped films was 8×10-4 Ωcm. The carrier concentration was found to increase with Al doping.


2018 ◽  
Vol 31 (3) ◽  
pp. 20
Author(s):  
Sarmad M. M. Ali ◽  
Alia A.A. Shehab ◽  
Samir A. Maki

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hall effect measurements of ZnTe , ZnTe:Cu films show that all films were (p-type), the carrier concentration (1.1×1020 m-3) , Hall mobility (0.464m2/V.s) for pure ZnTe film, increases the carrier concentration (6.3×1021m-3) Hall mobility (2m2/V.s) for doping (Cu at 3%) film, but  decreases by increasing Cu concentration.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 692
Author(s):  
Jong Hyeon Won ◽  
Seong Ho Han ◽  
Bo Keun Park ◽  
Taek-Mo Chung ◽  
Jeong Hwan Han

Herein, we performed a comparative study of plasma-enhanced atomic layer deposition (PEALD) of SnO2 films using Sn(dmamp)2 as the Sn source and either H2O plasma or O2 plasma as the oxygen source in a wide temperature range of 100–300 °C. Since the type of oxygen source employed in PEALD determines the growth behavior and resultant film properties, we investigated the growth feature of both SnO2 PEALD processes and the various chemical, structural, morphological, optical, and electrical properties of SnO2 films, depending on the oxygen source. SnO2 films from Sn(dmamp)2/H2O plasma (SH-SnO2) and Sn(dmamp)2/O2 plasma (SO-SnO2) showed self-limiting atomic layer deposition (ALD) growth behavior with growth rates of ~0.21 and 0.07–0.13 nm/cycle, respectively. SO-SnO2 films showed relatively larger grain structures than SH-SnO2 films at all temperatures. Interestingly, SH-SnO2 films grown at high temperatures of 250 and 300 °C presented porous rod-shaped surface morphology. SO-SnO2 films showed good electrical properties, such as high mobility up to 27 cm2 V−1·s−1 and high carrier concentration of ~1019 cm−3, whereas SH-SnO2 films exhibited poor Hall mobility of 0.3–1.4 cm2 V−1·s−1 and moderate carrier concentration of 1 × 1017–30 × 1017 cm−3. This may be attributed to the significant grain boundary and hydrogen impurity scattering.


Sign in / Sign up

Export Citation Format

Share Document