High‐quality focused‐ion‐beam‐made mirrors for InGaP/InGaAlP visible‐laser diodes

1993 ◽  
Vol 74 (12) ◽  
pp. 7048-7053
Author(s):  
M. H. F. Overwijk ◽  
J. A. de Poorter
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Galia Pozina ◽  
Azat R. Gubaydullin ◽  
Maxim I. Mitrofanov ◽  
Mikhail A. Kaliteevski ◽  
Iaroslav V. Levitskii ◽  
...  

1996 ◽  
Vol 69 (13) ◽  
pp. 1906-1908 ◽  
Author(s):  
A. Orth ◽  
J. P. Reithmaier ◽  
R. Zeh ◽  
H. Doleschel ◽  
A. Forchel

2012 ◽  
Vol 717-720 ◽  
pp. 889-892 ◽  
Author(s):  
Hamidreza Zamani ◽  
Seung Wan Lee ◽  
Amir Avishai ◽  
Christian A. Zorman ◽  
R. Mohan Sankaran ◽  
...  

We report on experimental explorations of using focused ion beam (FIB) nanomachining of different types of silicon carbide (SiC) thin membranes, for making robust, high-quality stencil masks for new emerging options of nanoscale patterning. Using thin films and membranes in polycrystalline SiC (poly-SiC), 3C-SiC, and amorphous SiC (a-SiC) with thicknesses in the range of t~250nm−1.6μm, we have prototyped a series of stencil masks, with nanoscale features routinely down to ~100nm.


2014 ◽  
Vol 20 (6) ◽  
pp. 1638-1645 ◽  
Author(s):  
Martial Duchamp ◽  
Qiang Xu ◽  
Rafal E Dunin-Borkowski

AbstractA procedure based on focused ion beam milling and in situ lift-out is introduced for the preparation of high-quality specimens for in situ annealing experiments in the transmission electron microscope. The procedure allows an electron-transparent lamella to be cleaned directly on a heating chip using a low ion energy and back-side milling in order to minimize redeposition and damage. The approach is illustrated through the preparation of an Al–Mn–Fe complex metallic alloy specimen.


2021 ◽  
Author(s):  
Shiyou Xu ◽  
Michael Stranick ◽  
Deon Hines ◽  
Ke Du ◽  
Long Pan

Abstract Scanning Electron Microscope/Focused Ion Beam (SEM/FIB) system has become a valuable and popular tool for the analysis of biological materials such as dentine structures. According to physiological and anatomical studies, dentine structures are a complicated system containing collagen fibers, nanocrystalline hydroxyapatite, and numerous networks of tubular pores. During a routine FIB milling process, collagen fibers and other organic structures are vaporized, while the number of tubular pores remaining is increased. This causes the final cross-section to be more porous than the real sample. Unfortunately, little attention has been paid to the collagen fiber loss and how to preserve them during a FIB milling process. In this work, we present a novel and simple approach to preserve the organic portions of the dentine structure through metal staining. By using this method, the porosity of the dentine structure after the FIB milling process is significantly reduced similar to the real sample. This indicates that the organic portion of the dentine structure is well protected by the metal staining. This approach enables the SEM/FIB system to generate super-high quality SEM images with less ion beam damage; and the SEM images can better reflect the original condition of the dentine structure. Further, serial energy-dispersive X-ray spectroscopy (EDS) mapping of the stained dentine structure is achieved without an additional metal coating; and three-dimensional (3-D) elemental mapping of an occluded dentine is achieved with a significantly reduced data acquisition time.


2021 ◽  
Author(s):  
Tristan Borchers ◽  
Filip Topic ◽  
Jan-Constantin Christopherson ◽  
Oleksandr S. Bushuyev ◽  
Jogirdas Vainauskas ◽  
...  

Cocrystallisation of a fluorinated azobenzene with volatile cocrystal components dioxane or pyrazine yields halogen-bonded cocrystals that can be cut, carved or engraved with low-powered visible laser light. This process, termed cocrystal laser micro-shaping (CLMS), is enabled by cocrystallisation of a visible light dye with a volatile component, giving rise to materials that can be selectively disassembled with micrometer precision using gentle, non-burning irradiation in a commercial confocal microscope setup. The ability to shape and even machine cocrystals in 3D using laser powers between 0.5 and 20 mW, which are 2-4 orders of magnitude lower compared to laser powers used for machining metals, ceramics or polymers, is rationalized by CLMS targeting the disruption of weak supramolecular interactions between cocrystal components, rather than the breaking of covalent bonds in polymers or disruption of ionic structures required for conventional laser beam or focused ion beam machining processes, mainly by high-power laser heating.<br>


Author(s):  
Vitaly Polovinkin ◽  
Krishna Khakurel ◽  
Michal Babiak ◽  
Borislav Angelov ◽  
Bohdan Schneider ◽  
...  

AbstractElectron crystallography of sub-micron sized 3D protein crystals has emerged recently as a valuable field of structural biology. In meso crystallization methods, utilizing lipidic mesophases, particularly lipidic cubic phases (LCPs), can produce high-quality 3D crystals of membrane proteins (MPs). A major step towards realising 3D electron crystallography of MP crystals, grown in meso, is to demonstrate electron diffraction from such crystals. The first task is to remove the viscous and sticky lipidic matrix, surrounding the crystals without damaging the crystals. Additionally, the crystals have to be thin enough to let electrons traverse them without significant multiple scattering. In the present work, we experimentally verified the concept that focused ion beam milling at cryogenic temperatures (cryo-FIB) can be used to remove excess host lipidic mesophase matrix, and then thin the crystals to a thickness suitable for electron diffraction. In this study, bacteriorhodopsin (BR) crystals grown in a lipidic mesophase of monoolein were used as a model system. LCP from a part of a 50-μm thick crystal, which was flash-frozen in liquid nitrogen, was milled away with a gallium FIB under cryogenic conditions, and a part of the crystal itself was thinned into a ∼210-nm thick lamella with the ion beam. The frozen sample was then transferred into an electron cryo-microscope (cryo-EM), and a nanovolume of ∼1400×1400×210 nm3 of the BR lamella was exposed to 200-kV electrons at a fluence of ∼0.06 e−/Å2. The resulting electron diffraction peaks were detected beyond 2.7-Å resolution (with mean signal-to-noise ratio <I/σ(I)> of >7) by a CMOS-based Ceta 16M camera. The results demonstrate, that cryo-FIB milling produces high quality lamellae from crystals grown in lipidic mesophases, and pave the way for 3D electron crystallography on crystals grown or embedded in highly viscous media.SynopsisElectron diffraction experiments on crystals of membrane proteins grown in lipidic mesophases have not been possible due to a thick layer of viscous crystallisation medium around the crystals. Here we show that focused ion beam milling at cryogenic temperatures (cryo-FIB milling) can remove the viscous layer, and demonstrate high-quality electron diffraction on a FIB-milled lamella of a bacteriorhodopsin 3D crystal.


1996 ◽  
Author(s):  
Isao KIDOGUCHI ◽  
Hideto ADACHI ◽  
Kiyotake TANAKA ◽  
Toshiya FUKUHISA ◽  
Masaya MANNOH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document