Fabrication of narrow-band-gap hydrogenated amorphous silicon by chemical annealing

1998 ◽  
Vol 84 (3) ◽  
pp. 1333-1339 ◽  
Author(s):  
Wataru Futako ◽  
Shinya Takeoka ◽  
Charles M. Fortmann ◽  
Isamu Shimizu
2011 ◽  
Vol 11 (1) ◽  
pp. S50-S53 ◽  
Author(s):  
Chao-Chun Wang ◽  
Chueh-Yang Liu ◽  
Shui-Yang Lien ◽  
Ko-Wei Weng ◽  
Jung-Jie Huang ◽  
...  

1998 ◽  
Vol 507 ◽  
Author(s):  
K. Fukutani ◽  
T. Sugawara ◽  
W Futako ◽  
T. Kamiya ◽  
C.M. Fortmann ◽  
...  

ABSTRACTHydrogenated amorphous silicon (a-Si:H) films were prepared by a layer-by-layer (LBL) argon treatment technique. Thin amorphous silicon layers are first deposited and then treated by Ar. Thick films are built up by repeatedly the process many times. By reducing the deposition rate during deposition time (T, sec), a-Si:H with the gaps narrower than 1·55eV were prepared at substrate temperature lower than 300°C. These narrow-gap films contained less than 2 at.% hydrogen and had rigid Si network. Also, these narrow gap films exhibited good light soaking stability.


1996 ◽  
Vol 420 ◽  
Author(s):  
K. Yoshino ◽  
W. Futako ◽  
Y. Wasai ◽  
I. Shimizu

AbstractHigh quality wide gap hydrogenated amorphous silicon has been prepared using the chemical annealing technique. It was possible to prepare materials with band gaps ranging 1.8 to 2.1 eV by varying the preparation parameters. Low defect densities less than (3–8) x 1015 cm-3 could be maintained over the entire band gap range. Improved stability for light soaking was also observed in the wide gap materials.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 402 ◽  
Author(s):  
Chia-Hsun Hsu ◽  
Xiao-Ying Zhang ◽  
Ming Jie Zhao ◽  
Hai-Jun Lin ◽  
Wen-Zhang Zhu ◽  
...  

Boron-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films are deposited using high frequency 27.12 MHz plasma enhanced chemical vapor deposition system as a window layer of silicon heterojunction (SHJ) solar cells. The CH4 gas flow rate is varied to deposit various a-SiC:H films, and the optical and electrical properties are investigated. The experimental results show that at the CH4 flow rate of 40 sccm the a-SiC:H has a high band gap of 2.1 eV and reduced absorption coefficients in the whole wavelength region, but the electrical conductivity deteriorates. The technology computer aided design simulation for SHJ devices reveal the band discontinuity at i/p interface when the a-SiC:H films are used. For fabricated SHJ solar cell performance, the highest conversion efficiency of 22.14%, which is 0.33% abs higher than that of conventional hydrogenated amorphous silicon window layer, can be obtained when the intermediate band gap (2 eV) a-SiC:H window layer is used.


1996 ◽  
Vol 420 ◽  
Author(s):  
W. Futako ◽  
I. Shimizu ◽  
C. M. Fortmann

AbstractHydrogenated amorphous silicon (a-Si:H) with a gaps narrower than 1.7 eV were made by repeating the deposition of a thin layer (1–3 nm thick) and the treatment of growing surface with a mixture of H and Ar*. Crystallization induced by permeation of hydrogen into the subsurface at high substrate temperature (>200C) was efficiently prevented by treating with a mixture of H and Ar*. The activation of growing surface may arise from releasing a part of hydrogen on surface by treating with Ar*. High quality a-Si:H films containing hydrogen of 3 atom % with a gap of 1.6 eV were made by chemical annealing with a mixture of H and Ar*.


2004 ◽  
Vol 96 (7) ◽  
pp. 3818-3826 ◽  
Author(s):  
A. H. Mahan ◽  
R. Biswas ◽  
L. M. Gedvilas ◽  
D. L. Williamson ◽  
B. C. Pan

1991 ◽  
Vol 70 (9) ◽  
pp. 4926-4930 ◽  
Author(s):  
S. Al‐Dallal ◽  
S. Aljishi ◽  
M. Hammam ◽  
S. M. Al‐Alawi ◽  
M. Stutzmann ◽  
...  

1986 ◽  
Vol 70 ◽  
Author(s):  
Masud Akhtar ◽  
Herbert A. Weaklie

ABSTRACTHydrogenated amorphous silicon may be deposited at relatively low temperatures, where the density of defects may be expected to be low, by the chemical vapor deposition (CVD) of higher silanes. This method is an attractive alternative to plasma deposition techniques. We describe here the preparation of a-Si:H and related alloys incorporating carbon, germanium, and fluorine. a-Si:H films were deposited on heated substrates in the range 365°C-445°C by CVD of Si2H6 and Si3H8. The optical gap (Eg) ranged from 1.4 to 1.7 eV and the properties of films deposited from either Si2 H6 or Si3 H8 were quite similar. Wide band gap (Eg=2 eV) alloys of a-SiC:H doped with boron were prepared by CVD of disilane, methyl silane, and diborane. We also prepared variable band gap a-SiC:H alloys by substituting F2C= CFH for methylsilane, and these films were found to have approximately 1–2% fluorine incorporated. The dark conductivity of the boron doped a-SiC:H alloys dep~sited from either carbon source ranged from ix10-7 to 6x10-7 (ohm-cm)-1. We also prepared low band aap alloys of Si and Ge by CVD of trisilane and germane. The band gap of a film containing 20% Ge was 1.5 eV; however, the photoconductivity of the film was relatively low.


Sign in / Sign up

Export Citation Format

Share Document