Firing response of a neural model with threshold modulation and neural dynamics

1986 ◽  
Author(s):  
Paolo Sibani
Keyword(s):  
2021 ◽  
Vol 15 ◽  
Author(s):  
Luca L. Bologna ◽  
Roberto Smiriglia ◽  
Dario Curreri ◽  
Michele Migliore

The description of neural dynamics, in terms of precise characterizations of action potential timings and shape and voltage related measures, is fundamental for a deeper understanding of the neural code and its information content. Not only such measures serve the scientific questions posed by experimentalists but are increasingly being used by computational neuroscientists for the construction of biophysically detailed data-driven models. Nonetheless, online resources enabling users to perform such feature extraction operation are lacking. To address this problem, in the framework of the Human Brain Project and the EBRAINS research infrastructure, we have developed and made available to the scientific community the NeuroFeatureExtract, an open-access online resource for the extraction of electrophysiological features from neural activity data. This tool allows to select electrophysiological traces of interest, fetched from public repositories or from users’ own data, and provides ad hoc functionalities to extract relevant features. The output files are properly formatted for further analysis, including data-driven neural model optimization.


2017 ◽  
Author(s):  
Vincenzo G. Fiore ◽  
Tobias Nolte ◽  
Francesco Rigoli ◽  
Peter Smittenaar ◽  
Xiaosi Gu ◽  
...  

AbstractThe external part of the globus pallidus (GPe) is a core nucleus of the basal ganglia (BG) whose activity is disrupted under conditions of low dopamine release, as in Parkinson’s disease. Current models assume decreased dopamine release in the dorsal striatum results in deactivation of dorsal GPe, which in turn affects motor expression via a regulatory effect on other nuclei of the BG. However, recent studies in healthy and pathological animal models have reported neural dynamics that do not match with this view of the GPe as a relay in the BG circuit. Thus, the computational role of the GPe in the BG is still to be determined. We previously proposed a neural model that revisits the functions of the nuclei of the BG, and this model predicts that GPe encodes values which are amplified under a condition of low striatal dopaminergic drive. To test this prediction, we used an fMRI paradigm involving a within-subject placebo-controlled design, using the dopamine antagonist risperidone, wherein healthy volunteers performed a motor selection and maintenance task under low and high reward conditions. ROI-based fMRI analysis revealed an interaction between reward and dopamine drive manipulations, with increased BOLD activity in GPe in a high compared to low reward condition, and under risperidone compared to placebo. These results confirm the core prediction of our computational model, and provide a new perspective on neural dynamics in the BG and their effects on motor selection and motor disorders.


2014 ◽  
Vol 1 ◽  
pp. 739-742
Author(s):  
Tetsuya Shimokawa ◽  
Kenji Leibnitz ◽  
Ferdinand Peper

Author(s):  
A. Syahputra

Surveillance is very important in managing a steamflood project. On the current surveillance plan, Temperature and steam ID logs are acquired on observation wells at least every year while CO log (oil saturation log or SO log) every 3 years. Based on those surveillance logs, a dynamic full field reservoir model is updated quarterly. Typically, a high depletion rate happens in a new steamflood area as a function of drainage activities and steamflood injection. Due to different acquisition time, there is a possibility of misalignment or information gaps between remaining oil maps (ie: net pay, average oil saturation or hydrocarbon pore thickness map) with steam chest map, for example a case of high remaining oil on high steam saturation interval. The methodology that is used to predict oil saturation log is neural network. In this neural network method, open hole observation wells logs (static reservoir log) such as vshale, porosity, water saturation effective, and pay non pay interval), dynamic reservoir logs as temperature, steam saturation, oil saturation, and acquisition time are used as input. A study case of a new steamflood area with 16 patterns of single reservoir target used 6 active observation wells and 15 complete logs sets (temperature, steam ID, and CO log), 19 incomplete logs sets (only temperature and steam ID) since 2014 to 2019. Those data were divided as follows ~80% of completed log set data for neural network training model and ~20% of completed log set data for testing the model. As the result of neural model testing, R2 is score 0.86 with RMS 5% oil saturation. In this testing step, oil saturation log prediction is compared to actual data. Only minor data that shows different oil saturation value and overall shape of oil saturation logs are match. This neural network model is then used for oil saturation log prediction in 19 incomplete log set. The oil saturation log prediction method can fill the gap of data to better describe the depletion process in a new steamflood area. This method also helps to align steam map and remaining oil to support reservoir management in a steamflood project.


2020 ◽  
Author(s):  
Amandine Lassalle ◽  
Michael X Cohen ◽  
Laura Dekkers ◽  
Elizabeth Milne ◽  
Rasa Gulbinaite ◽  
...  

Background: People with an Autism Spectrum Condition diagnosis (ASD) are hypothesized to show atypical neural dynamics, reflecting differences in neural structure and function. However, previous results regarding neural dynamics in autistic individuals have not converged on a single pattern of differences. It is possible that the differences are cognitive-set-specific, and we therefore measured EEG in autistic individuals and matched controls during three different cognitive states: resting, visual perception, and cognitive control.Methods: Young adults with and without an ASD (N=17 in each group) matched on age (range 20 to 30 years), sex, and estimated Intelligence Quotient (IQ) were recruited. We measured their behavior and their EEG during rest, a task requiring low-level visual perception of gratings of varying spatial frequency, and the “Simon task” to elicit activity in the executive control network. We computed EEG power and Inter-Site Phase Clustering (ISPC; a measure of connectivity) in various frequency bands.Results: During rest, there were no ASD vs. controls differences in EEG power, suggesting typical oscillation power at baseline. During visual processing, without pre-baseline normalization, we found decreased broadband EEG power in ASD vs. controls, but this was not the case during the cognitive control task. Furthermore, the behavioral results of the cognitive control task suggest that autistic adults were better able to ignore irrelevant stimuli.Conclusions: Together, our results defy a simple explanation of overall differences between ASD and controls, and instead suggest a more nuanced pattern of altered neural dynamics that depend on which neural networks are engaged.


2019 ◽  
Author(s):  
Scott D. Blain ◽  
Rachael Grazioplene ◽  
Yizhou Ma ◽  
Colin G. DeYoung

Psychosis proneness has been linked to heightened Openness to Experience and to cognitive deficits. Openness and psychotic disorders are associated with the default and frontoparietal networks, and the latter network is also robustly associated with intelligence. We tested the hypothesis that functional connectivity of the default and frontoparietal networks is a neural correlate of the openness-psychoticism dimension. Participants in the Human Connectome Project (N = 1003) completed measures of psychoticism, openness, and intelligence. Resting state functional magnetic resonance imaging was used to identify intrinsic connectivity networks. Structural equation modeling revealed relations among personality, intelligence, and network coherence. Psychoticism, openness, and especially their shared variance, were related positively to default network coherence and negatively to frontoparietal coherence. These associations remained after controlling for intelligence. Intelligence was positively related to frontoparietal coherence. Research suggests psychoticism and openness are linked in part through their association with connectivity in networks involving experiential simulation and cognitive control. We propose a model of psychosis risk that highlights roles of the default and frontoparietal networks. Findings echo research on functional connectivity in psychosis patients, suggesting shared mechanisms across the personality-psychopathology continuum.


Sign in / Sign up

Export Citation Format

Share Document