Estimation of some matrix elements of the dynamical dipolar polarizability of iodine atom from long‐range dispersion energy terms for molecular iodine

1983 ◽  
Vol 78 (7) ◽  
pp. 4544-4546 ◽  
Author(s):  
J. Vigue ◽  
M. Saute ◽  
M. Aubert‐Frécon
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4210 ◽  
Author(s):  
Sanjay Gopalan ◽  
Gautam Gaddemane ◽  
Maarten L. Van de Put ◽  
Massimo V. Fischetti

The absence of a band gap in graphene makes it of minor interest for field-effect transistors. Layered metal chalcogenides have shown great potential in device applications thanks to their wide bandgap and high carrier mobility. Interestingly, in the ever-growing library of two-dimensional (2D) materials, monolayer InSe appears as one of the new promising candidates, although still in the initial stage of theoretical studies. Here, we present a theoretical study of this material using density functional theory (DFT) to determine the electronic band structure as well as the phonon spectrum and electron-phonon matrix elements. The electron-phonon scattering rates are obtained using Fermi’s Golden Rule and are used in a full-band Monte Carlo computer program to solve the Boltzmann transport equation (BTE) to evaluate the intrinsic low-field mobility and velocity-field characteristic. The electron-phonon matrix elements, accounting for both long- and short-range interactions, are considered to study the contributions of different scattering mechanisms. Since monolayer InSe is a polar piezoelectric material, scattering with optical phonons is dominated by the long-range interaction with longitudinal optical (LO) phonons while scattering with acoustic phonons is dominated by piezoelectric scattering with the longitudinal (LA) branch at room temperature (T = 300 K) due to a lack of a center of inversion symmetry in monolayer InSe. The low-field electron mobility, calculated considering all electron-phonon interactions, is found to be 110 cm2V−1s−1, whereas values of 188 cm2V−1s−1 and 365 cm2V−1s−1 are obtained considering the long-range and short-range interactions separately. Therefore, the calculated electron mobility of monolayer InSe seems to be competitive with other previously studied 2D materials and the piezoelectric properties of monolayer InSe make it a suitable material for a wide range of applications in next generation nanoelectronics.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850021 ◽  
Author(s):  
H. G. Ganev

The tensor properties of the [Formula: see text] algebra generators are determined in respect to the reduction chain [Formula: see text], which defines a shell-model coupling scheme of the proton–neutron symplectic model (PNSM). They are further used to calculate the matrix elements of the basic [Formula: see text] operators of the PNSM in the space of fully symmetric representations in the [Formula: see text]-coupled basis using a generalized Wigner–Eckart theorem. The obtained results allow further the matrix elements of any physical operator of interest, such as the relevant transition operators or the collective potential, to be calculated. As an illustration, the matrix elements of the basic irreducible tensor terms which appear in the [Formula: see text] decomposition of the long-range full major-shell mixing proton–neutron quadrupole–quadrupole interaction are presented.


1983 ◽  
Vol 87 (13) ◽  
pp. 2348-2360 ◽  
Author(s):  
R. F. Heidner ◽  
C. E. Gardner ◽  
G. I. Segal ◽  
T. M. El-Sayed

Author(s):  
Alfredo Aguado ◽  
Octavio Roncero ◽  
Cristina Sanz-Sanz

Full dimensional analytical fits of the coupled potential energy surfaces for the three lower singlet and triplet adiabatic states of H+3 are developed, providing analytic derivatives and non-adiabatic coupling matrix elements.


Sign in / Sign up

Export Citation Format

Share Document