scholarly journals Nanoscale spatial resolution probes for scanning thermal microscopy of solid state materials

2012 ◽  
Vol 112 (11) ◽  
pp. 114317 ◽  
Author(s):  
P. Tovee ◽  
M. Pumarol ◽  
D. Zeze ◽  
Kevin Kjoller ◽  
O. Kolosov
2005 ◽  
Author(s):  
Hsinyi Lo ◽  
Wenjun Liu ◽  
Mehdi Asheghi

Scanning Thermal Microscopy (SThM) employs a thermocouple as the scanning sensor to capture thermal images with sub-micron spatial resolution. After nearly two decades of research and development in this area, many outstanding issues/questions related to the accuracy and resolution of SThM technique has remained either unanswered or at best ambiguously defined. The present work uses numerical simulation for heat conduction in a combined SThM probe and device to obtain temperature distributions in various heated nanostructures. The limits of accuracy and spatial resolution of the SThM technique for heated metal bridges are estimated using a probe with 100 nm thermocouple junction as the temperature sensor. It is concluded mat large errors in temperature measurements should be expected for small devices that are fabricated on poor thermal conductivity substrates. There is no clear and unique definition for the spatial resolution of the SThM technique as it may change for different device configuration and substrates. It appears that the finite dimensions of the probe and contact area impose a limit on the spatial resolution of the SThM, which is strongly influenced by temperature gradients across the device under test.


2021 ◽  
Vol 129 (16) ◽  
pp. 164502
Author(s):  
V. Leitgeb ◽  
R. Hammer ◽  
L. Mitterhuber ◽  
K. Fladischer ◽  
F. Peter ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 491
Author(s):  
Christoph Metzke ◽  
Fabian Kühnel ◽  
Jonas Weber ◽  
Günther Benstetter

New micro- and nanoscale devices require electrically isolating materials with specific thermal properties. One option to characterize these thermal properties is the atomic force microscopy (AFM)-based scanning thermal microscopy (SThM) technique. It enables qualitative mapping of local thermal conductivities of ultrathin films. To fully understand and correctly interpret the results of practical SThM measurements, it is essential to have detailed knowledge about the heat transfer process between the probe and the sample. However, little can be found in the literature so far. Therefore, this work focuses on theoretical SThM studies of ultrathin films with anisotropic thermal properties such as hexagonal boron nitride (h-BN) and compares the results with a bulk silicon (Si) sample. Energy fluxes from the probe to the sample between 0.6 µW and 126.8 µW are found for different cases with a tip radius of approximately 300 nm. A present thermal interface resistance (TIR) between bulk Si and ultrathin h-BN on top can fully suppress a further heat penetration. The time until heat propagation within the sample is stationary is found to be below 1 µs, which may justify higher tip velocities in practical SThM investigations of up to 20 µms−1. It is also demonstrated that there is almost no influence of convection and radiation, whereas a possible TIR between probe and sample must be considered.


2021 ◽  
Author(s):  
Corey R. Martin ◽  
Kyoung Chul Park ◽  
Ryan E. Corkill ◽  
Preecha Kittikhunnatham ◽  
Gabrielle A. Leith ◽  
...  

In this paper, spiropyran-containing metal- and covalent-organic frameworks (MOFs and COFs, respectively) are probed as platforms for fostering photochromic behavior in solid-state materials while simultaneously promoting directional energy transfer (ET)....


1987 ◽  
Vol 97 ◽  
Author(s):  
Steven A. Sunshine ◽  
Doris Kang ◽  
James A. Ibers

ABSTRACTThe use of A2 Q/Q melts (A - alkali metal, Q - S or Se) for the synthesis of new one-dimensional solid-state materials is found to be of general utility and is illustrated here for the synthesis of K4 Ti3 SI4. Reaction of Ti metal with a K2 S/S melt at 375°C for 50 h affords K4 Ti3 SI4. The structure possesses one-dimensional chains of seven and eightcoordinate Ti atoms with each chain isolated from all others by surrounding K atoms. There are six S-S pairs (dave - 2.069(3) Å) so that the compound is one of TiIV and may be described as K4 [Ti3 (S)2 (S2)6]. Electrical conductivity measurements indicate that this material is a semiconductor.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


Sign in / Sign up

Export Citation Format

Share Document