scholarly journals Electronic structure, surface morphology, and topologically protected surface states of Sb2Te3 thin films grown on Si(111)

2013 ◽  
Vol 113 (5) ◽  
pp. 053706 ◽  
Author(s):  
L. Plucinski ◽  
A. Herdt ◽  
S. Fahrendorf ◽  
G. Bihlmayer ◽  
G. Mussler ◽  
...  
2016 ◽  
Vol 19 (2) ◽  
pp. 92-100
Author(s):  
Ngoc Kim Pham ◽  
Thang Bach Phan ◽  
Vinh Cao Tran

In this study, we have investigated influences of the thickness on the structure, surface morphology and resistive switching characteristics of CrOx thin films prepared by using DC reactive sputtering technique. The Raman and FTIR analysis revealed that multiphases including Cr2O3, CrO2, Cr8O21... phases coexist in the microstructure of CrOx film. It is noticed that the amount of stoichiometric Cr2O3 phase increased significantly as well as the surface morphology were more visible with less voids and more densed particles with larger thickness films. The Ag/CrOx/FTO devices exhibited bipolar resistive switching behavior and high reliability. The resistive switching ratio has decreased slightly with the thickness increments and was best achieved at CrOx – 100 nm devices.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sandip V. Kamat ◽  
Vijaya Puri ◽  
R. K. Puri

This paper reports on the structural properties of poly(3-methylthiophene) P3MeT thin films prepared by vacuum evaporation on the glass substrates. The structural and surface morphology, wettability, adhesion, and intrinsic stress of these thin films were studied for three different thicknesses. The variation of the film thickness affects the structure, surface, and mechanical properties of P3MeT thin films. Vapor chopping also strongly influences the surface morphology, surface roughness, and wettability of the thin films. It was found that there is a decrease in the intrinsic stress and (RMS) roughness, while the adhesion increases with increase in film thickness.


2008 ◽  
Vol 55-57 ◽  
pp. 593-596 ◽  
Author(s):  
P. Inchidjuy ◽  
Supakorn Pukird ◽  
J. Nukeaw

Thin films of Nickel Phthalocyanine (NiPc) are prepared at a base pressure of 10-6 mbar using Organic Evaporator System. The films are deposited onto the glass substrate at various temperatures of 100 0C, 120 0C, 140 0C and 160 0C. Crystalline of NiPc thin films was investigated by X-ray diffraction (XRD) spectroscopy. XRD patterns exhibit to become aggravated crystalline films as monoclinic structure. Surface morphology of NiPc thin films was characterized by field emission scanning electron microscope (FE-SEM). FE-SEM micrographs indicate that fiber-like morphology of NiPc is enhanced with increasing substrate temperature. The optical absorption spectra of these thin films are measured. Present studies reveal that the Q-band of NiPc thin films appears as the change of electron energy level. Absorption spectra obtained from UV-vis of deposited NiPc are declined as the substrate temperature is risen.


Sign in / Sign up

Export Citation Format

Share Document