Hot deformation induced defects and performance enhancement in FeSb2 thermoelectric materials

2013 ◽  
Vol 114 (18) ◽  
pp. 184904 ◽  
Author(s):  
Yongzheng Wang ◽  
Chenguang Fu ◽  
Tiejun Zhu ◽  
Lipeng Hu ◽  
Guangyu Jiang ◽  
...  
2019 ◽  
Vol 9 (7) ◽  
pp. 1422 ◽  
Author(s):  
Kwok Shah ◽  
Su-Xi Wang ◽  
Debbie Soo ◽  
Jianwei Xu

The past few decades have witnessed considerable progress of conducting polymer-based organic thermoelectric materials due to their significant advantages over the traditional inorganic materials. The nanostructure engineering and performance investigation of these conducting polymers for thermoelectric applications have received considerable interest but have not been well documented. This review gives an outline of the synthesis of various one-dimensional (1D) structured conducting polymers as well as the strategies for hybridization with other nanomaterials or polymers. The thermoelectric performance enhancement of these materials in association with the unique morphologies and structures are discussed. Finally, perspectives and suggestions for the future research based on these interesting nanostructuring methodologies for improvement of thermoelectric materials are also presented.


Author(s):  
Shangqing Qu ◽  
Jing Zhao ◽  
Zimin Jiang ◽  
Dequan Jiang ◽  
Yonggang Wang

The pavonite homologous series assembled from two basic modules is a potential n-type thermoelectric material.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3515
Author(s):  
Weikang Wang ◽  
Xuanchun Wei ◽  
Xinhua Cai ◽  
Hongyang Deng ◽  
Bokang Li

: The early-age carbonation curing technique is an effective way to improve the performance of cement-based materials and reduce their carbon footprint. This work investigates the early mechanical properties and microstructure of calcium sulfoaluminate (CSA) cement specimens under early-age carbonation curing, considering five factors: briquetting pressure, water–binder (w/b) ratio, starting point of carbonation curing, carbonation curing time, and carbonation curing pressure. The carbonization process and performance enhancement mechanism of CSA cement are analyzed by mercury intrusion porosimetry (MIP), thermogravimetry and derivative thermogravimetry (TG-DTG) analysis, X-ray diffraction (XRD), and scanning electron microscope (SEM). The results show that early-age carbonation curing can accelerate the hardening speed of CSA cement paste, reduce the cumulative porosity of the cement paste, refine the pore diameter distribution, and make the pore diameter distribution more uniform, thus greatly improving the early compressive strength of the paste. The most favorable w/b ratio for the carbonization reaction of CSA cement paste is between 0.15 and 0.2; the most suitable carbonation curing starting time point is 4 h after initial hydration; the carbonation curing pressure should be between 3 and 4 bar; and the most appropriate time for carbonation curing is between 6 and 12 h.


Sign in / Sign up

Export Citation Format

Share Document