scholarly journals High energy gain in three-dimensional simulations of light sail acceleration

2014 ◽  
Vol 105 (8) ◽  
pp. 084105 ◽  
Author(s):  
A. Sgattoni ◽  
S. Sinigardi ◽  
A. Macchi
2021 ◽  
Vol 162 (6) ◽  
pp. 284
Author(s):  
J. J. Spake ◽  
A. Oklopčić ◽  
L. A. Hillenbrand

Abstract Understanding the effects of high-energy radiation and stellar winds on planetary atmospheres is vital for explaining the observed properties of close-in exoplanets. Observations of transiting exoplanets in the triplet of metastable helium lines at 10830 Å allow extended atmospheres and escape processes to be studied for individual planets. We observed one transit of WASP-107b with NIRSPEC on Keck at 10830 Å. Our observations, for the first time, had significant posttransit phase coverage, and we detected excess absorption for over an hour after fourth contact. The data can be explained by a comet-like tail extending out to ∼7 planet radii, which corresponds to roughly twice the Roche lobe radius of the planet. Planetary tails are expected based on three-dimensional simulations of escaping exoplanet atmospheres, particularly those including the interaction between the escaped material and strong stellar winds, and have been previously observed at 10830 Å in at least one other exoplanet. With both the largest midtransit absorption signal and the most extended tail observed at 10830 Å, WASP-107b remains a keystone exoplanet for atmospheric escape studies.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


2020 ◽  
Vol 15 (S359) ◽  
pp. 178-179
Author(s):  
Saqib Hussain ◽  
Rafael Alves Batista ◽  
Elisabete Maria de Gouveia Dal Pino ◽  
Klaus Dolag

AbstractWe present results of the propagation of high-energy cosmic rays (CRs) and their secondaries in the intracluster medium (ICM). To this end, we employ three-dimensional cosmological magnetohydrodynamical simulations of the turbulent intergalactic medium to explore the propagation of CRs with energies between 1014 and 1019 eV. We study the interaction of test particles with this environment considering all relevant electromagnetic, photohadronic, photonuclear, and hadronuclear processes. Finally, we discuss the consequences of the confinement of high-energy CRs in clusters for the production of gamma rays and neutrinos.


Sign in / Sign up

Export Citation Format

Share Document