scholarly journals Magnetic properties of epitaxial Fe3O4 films with various crystal orientations and tunnel magnetoresistance effect at room temperature

2014 ◽  
Vol 105 (10) ◽  
pp. 102410 ◽  
Author(s):  
Taro Nagahama ◽  
Yuya Matsuda ◽  
Kazuya Tate ◽  
Tomohiro Kawai ◽  
Nozomi Takahashi ◽  
...  
2020 ◽  
Vol 31 ◽  
Author(s):  
Chung Do PHAM

In this work, we study the magnetic properties of nickel nanowires by measuring their anisotropic magnetoresistance at room temperature. The single nickel nanowire is grown by electrodeposition in a polymer membrane (Polycarbonate). We measure the anisotropic magnetoresistance effect of nickel nanowires for the various values of the magnitudes and orientations of an external magnetic field. The results clearly show the existence the anisotropic magnetoresistance effect in the nickel nanowires. Besides, the experimental data are best fit to the analytical calculations using the Stoner-Wohlfarth model for the magnetization of the wires.


1977 ◽  
Vol 38 (C1) ◽  
pp. C1-95-C1-101 ◽  
Author(s):  
B. BOCHU ◽  
M. N. DESCHIZEAUX ◽  
J. C. JOUBERT ◽  
J. CHENAVAS ◽  
A. COLLOMB ◽  
...  

2001 ◽  
Vol 25 (4−2) ◽  
pp. 767-770 ◽  
Author(s):  
T. Daibou ◽  
M. Oogane ◽  
Y. Ando ◽  
C. Kim ◽  
O. Song ◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 655-666
Author(s):  
Mona Rekaby

Objective: The influence of Manganese (Mn2+) and Cobalt (Co2+) ions doping on the optical and magnetic properties of ZnO nanoparticles was studied. Methods: Nanoparticle samples of type ZnO, Zn0.97Mn0.03O, Zn0.96Mn0.03Co0.01O, Zn0.95Mn0.03 Co0.02O, Zn0.93Mn0.03Co0.04O, and Zn0.91Mn0.03Co0.06O were synthesized using the wet chemical coprecipitation method. Results: X-ray powder diffraction (XRD) patterns revealed that the prepared samples exhibited a single phase of hexagonal wurtzite structure without any existence of secondary phases. Transmission electron microscope (TEM) images clarified that Co doping at high concentrations has the ability to alter the morphologies of the samples from spherical shaped nanoparticles (NPS) to nanorods (NRs) shaped particles. The different vibrational modes of the prepared samples were analyzed through Fourier transform infrared (FTIR) measurements. The optical characteristics and structural defects of the samples were studied through Photoluminescence (PL) spectroscopy. PL results clarified that Mn2+ and Co2+ doping quenched the recombination of electron-hole pairs and enhanced the number of point defects relative to the undoped ZnO sample. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). (Mn, Co) co-doped ZnO samples exhibited a ferromagnetic behavior coupled with paramagnetic and weak diamagnetic contributions. Conclusion: Mn2+ and Co2+ doping enhanced the room temperature Ferromagnetic (RTFM) behavior of ZnO. In addition, the signature for antiferromagnetic ordering between the Co ions was revealed. Moreover, a strong correlation between the magnetic and optical behavior of the (Mn, Co) co-doped ZnO was analyzed.


2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


2013 ◽  
Vol 690-693 ◽  
pp. 1702-1706 ◽  
Author(s):  
Shuang Jun Nie ◽  
Hao Geng ◽  
Jun Bao Wang ◽  
Lai Sen Wang ◽  
Zhen Wei Wang ◽  
...  

NiZn-ferrite thin films were deposited onto silicon and glass substrates by radio frequency magnetron sputtering at room temperature. The effects of the relative oxygen flow ratio on the structure and magnetic properties of the thin films were investigated. The study results reveal that the films deposited under higher relative oxygen flow ratio show a better crystallinity. Static magnetic measurement results indicated that the saturation magnetization of the films was greatly affected by the crystallinity, grain dimension, and cation distribution in the NiZn-ferrite films. The NiZn-ferrite thin films with a maximum saturation magnetization of 151 emucm-3, which is about 40% of the bulk NiZn ferrite, was obtained under relative oxygen flow ratio of 60%.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1550
Author(s):  
Vineet Kumar ◽  
Anuj Kumar ◽  
Minseok Song ◽  
Dong-Joo Lee ◽  
Sung-Soo Han ◽  
...  

The increasing demand for polymer composites with novel or improved properties requires novel fillers. To meet the challenges posed, nanofillers such as graphene, carbon nanotubes, and titanium dioxide (TiO2) have been used. In the present work, few-layer graphene (FLG) and iron oxide (Fe3O4) or TiO2 were used as fillers in a room-temperature-vulcanized (RTV) silicone rubber (SR) matrix. Composites were prepared by mixing RTV-SR with nanofillers and then kept for vulcanization at room temperature for 24 h. The RTV-SR composites obtained were characterized with respect to their mechanical, actuation, and magnetic properties. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to investigate the composite raw materials and finished composites, and X-ray photoelectron spectroscopy (XPS) analysis was used to study composite surface elemental compositions. Results showed that mechanical properties were improved by adding fillers, and actuation displacements were dependent on the type of nanofiller used and the applied voltage. Magnetic stress-relaxation also increased with filler amount and stress-relaxation rates decreased when a magnetic field was applied parallel to the deformation axes. Thus, this study showed that the inclusion of iron oxide (Fe3O4) or TiO2 fillers in RTV-SR improves mechanical, actuation, and magnetic properties.


2021 ◽  
Vol 118 (4) ◽  
pp. 042411
Author(s):  
Thomas Scheike ◽  
Qingyi Xiang ◽  
Zhenchao Wen ◽  
Hiroaki Sukegawa ◽  
Tadakatsu Ohkubo ◽  
...  

1996 ◽  
Vol 156 (1-3) ◽  
pp. 369-370
Author(s):  
C. Prados ◽  
D. García ◽  
F. Lesmes ◽  
J.J. Freijo ◽  
A. Hemando

Sign in / Sign up

Export Citation Format

Share Document