Vital roles of nano silica in synthetic based mud for high temperature drilling operation

Author(s):  
Muhammad Aslam Md Yusof ◽  
Nor Hazimastura Hanafi
2015 ◽  
Vol 789-790 ◽  
pp. 80-84
Author(s):  
Muhammad Aslam Md Yusof ◽  
Norazwan Wahid ◽  
Nor Hazimastura Hanafi

Synthetic based mud has been widely used in the drilling operation because of its good properties. However, prolonged exposure of the mud in high temperature causes degradation of the good mud properties because of chemical instability. Because of that concern, this study intends to improve the performance of SBM with nanosilica at different concentration in high temperature high pressure (HTHP) applications. nanosilica with size of 10-20 nm has been selected for this study. The involving parameters in this study include the manipulation of nanoparticles concentration by total mud weight between 0 to 1.78 wt. %, and performance at temperature up to 350°F. The enhanced formulation has given significant benefits by reducing the filtration up to 41.67% and act as the rheology modifier in HTHP condition. Moreover, the optimum amount of nanosilica is 0.71% of total mud weight to avoid further rheological and filtration degradation.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3024
Author(s):  
M. Hassan Raza ◽  
Abraiz Khattak ◽  
Asghar Ali ◽  
Safi Ullah Butt ◽  
Bilal Iqbal ◽  
...  

Degradation of silicon rubber due to heat and humidity affect its performance in outdoor applications. To analyze the effects of high temperature and humidity on room temperature vulcanized (RTV) silicone rubber (SiR) and its composites, this study was performed. Five different sample compositions including neat silicone rubber (nSiR), microcomposites (15 wt% silica(SMC 15% SiO2) and 15 wt% ATH(SMC 15% ATH), nanocomposite (2.5 wt% silica(SNC 2.5% SiO2) and hybrid composite (10 wt% micro alumina trihydrate with 2 wt% nano silica(SMNC 10% ATH 2% SiO2) were prepared and subjected to 70 ˚C temperature and 80% relative humidity in an environmental chamber for 120 h. Contact angle, optical microscopy and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the recovery properties before and after applying stresses. Different trends of degradation and recovery were observed for different concentrations of composites. Addition of fillers improved the overall performance of composites and SMC 15% ATH composite performed better than other composites. For high temperature and humidity, the ATH-based microcomposite was recommended over silica due to its superior thermal retardation properties of ATH. It has been proved that ATH filler is able to withstand high temperature and humidity.


Author(s):  
Abdulnaser Al-Sabaeei ◽  
Madzlan Napiah ◽  
Muslich Sutanto ◽  
Noor Zainab Habib ◽  
Nura Bala ◽  
...  

Author(s):  
Ardalan Nasiri ◽  
Simon Ang

Abstract Alumina-based die attach and encapsulation for high-temperature (300oC to 500oC) electronic packaging were investigated. The alumina paste material comprises of aluminum dihydric phosphate as a binder and alumina powder as a filler with embedded nano aluminum nitride and nano-silica powders to promote its curing process, reduce its curing tension, and increase its bond shear strength. The chip-to-substrate bond strength was enhanced and met the MIL-STD-883 2019.9 requirements for die-attach assembly. Its encapsulation property was improved with fewer cracks compared to similar commercial ceramic encapsulants. The die-attach material and encapsulation properties tested at 500°C showed no defect or additional cracks. Thermal aging and thermal cycling were carried out on the samples. XPS analysis revealed a higher oxygen bonding percentage for the 10% nanosilica ceramic sample than the samples with no nano-silica. XRD peak broadening is largest for the 10% nano-silica ceramic which indicated smaller crystallite sizes. The smaller crystallite size for the 10% nanosilica sample introduces a larger microstrain to the alumina crystal structure. FTIR revealed the presence of alumina-silicate bonds on these samples with the largest amount present in the 10% nanosilica samples. Si-O and Al-O bonds were observed from FTIR on nanosilica samples especially the higher than 10% nanosilica samples. SEM and EDX results showed a uniform bond line for the 10% sample and uniform material distribution.


Sign in / Sign up

Export Citation Format

Share Document