Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

2015 ◽  
Vol 118 (12) ◽  
pp. 124305 ◽  
Author(s):  
Satyajit Mojumder ◽  
Abdullah Al Amin ◽  
Md Mahbubul Islam
Author(s):  
MD Imrul Reza Shishir ◽  
Alireza Tabarraei

Abstract Graphene sheets produced by chemical vapor deposition (CVD) are polycrystalline and the presence of grain boundaries (GBs) alter their mechanical properties relative to single-crystal graphene. In this study, we have performed a series of molecular dynamics simulations using REBO2+S potential in order to develop a failure criterion for infinite polycrystalline graphene sheets under biaxial tension. We have studied the effect of temperature on mechanical properties of polycrystalline graphene for both uniaxial and biaxial loading conditions. The normal stresses are normalized with respect to the corresponding uniaxial ultimate strength values and the normalized stresses are used to define the failure envelope of polycrystalline graphene. Our study suggests that a bilinear failure envelope or a circular failure envelope can be used to represent with reasonable accuracy the tensile strength of polycrystalline graphene under biaxial loading at different temperatures.


Author(s):  
Marcelo Lopes Pereira Junior ◽  
Wiliam Ferreira da Cunha ◽  
Douglas Soares Galvão ◽  
Luiz Antonio Ribeiro Junior

Recently, laser-assisted chemical vapor deposition has been used to synthesize a free-standing, continuous, and stable monolayer amorphous carbon (MAC).


2011 ◽  
Vol 378-379 ◽  
pp. 7-10
Author(s):  
Gui Xue Bian ◽  
Yue Liang Chen ◽  
Jian Jun Hu ◽  
Li Xu

Molecular dynamics simulation was used to simulate the tension process of purity and containing impurity metal aluminum. Elastic constants of purity and containing impurity metal aluminum were calculated, and the effects of impurity on the elastic constants were also studied. The results show that O-Al bond and Al-Al bond near oxygen atoms could be the sites of crack nucleation or growth under tensile load, the method can be extended to research mechanical properties of other metals and alloys structures.


Sign in / Sign up

Export Citation Format

Share Document