Label free detection of DNA on Au/ZnO/Ag hybrid structure based SERS substrate

Author(s):  
Anil Kumar Pal ◽  
D. Bharathi Mohan
2020 ◽  
Vol 13 (05) ◽  
pp. 2041004 ◽  
Author(s):  
Yang Li ◽  
Yanxian Guo ◽  
Binggang Ye ◽  
Zhengfei Zhuang ◽  
Peilin Lan ◽  
...  

Two-dimensional (2D) nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features. Herein, 2D hafnium ditelluride (HfTe[Formula: see text], a new member of transition metal tellurides, is exploited to support gold nanoparticles fabricating HfTe2-Au nanocomposites. The nanohybrids can serve as novel 2D surface-enhanced Raman scattering (SERS) substrate for the label-free detection of analyte with high sensitivity and reproducibility. Chemical mechanism originated from HfTe2 nanosheets and the electromagnetic enhancement induced by the hot spots on the nanohybrids may largely contribute to the superior SERS effect of HfTe2-Au nanocomposites. Finally, HfTe2-Au nanocomposites are utilized for the label-free SERS analysis of foodborne pathogenic bacteria, which realize the rapid and ultrasensitive Raman test of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Salmonella with the limit of detection of 10 CFU/mL and the maximum Raman enhancement factor up to [Formula: see text]. Combined with principal component analysis, HfTe2-Au-based SERS analysis also completes the bacterial classification without extra treatment.


2020 ◽  
Vol 12 (33) ◽  
pp. 4123-4129
Author(s):  
Wei Liu ◽  
Zihao Song ◽  
Yifan Zhao ◽  
Yu Liu ◽  
Xuan He ◽  
...  

Ag nanoparticle decorated porous silica aerogels as a flexible SERS substrate for sensitive, stable and label-free detection of explosive NTO was reported. And this substrate has a certain application prospect in the field of explosives sensing.


2021 ◽  
Author(s):  
Jiangtao Xu ◽  
Songmin Shang ◽  
Wei Gao ◽  
Ping Zeng ◽  
Shouxiang Kinor Jiang

Abstract Although strategies of compositing noble materials and Zeolitic imidazolate frameworks (ZIFs) have been used to enhance the performance of ZIF-based surface-enhanced Raman scattering (SERS) substrates, the enhancement process still remains unclear and the sampling process with powder-form substrates is challenging for practical applications. In this study, a flexible SERS substrate with silver (Ag) nanoparticle decorated ZIF-67 as the active materials and cotton fabric as the supporting framework is developed with a facile method in two steps. The proposed flexible SERS substrate not only can reduce difficulties during the sampling process, but also expands future applications for sampling towards irregular target substances. Meanwhile, the enhancement mechanism has been investigated by using Methylene Blue (MB) to probe the molecular interactions. The constructed SERS substrate shows the highest enhancement factor of 6.25×106 and an excellent detection sensitivity with a limitation of detection (LoD) of 10− 14 M/L. Because of its excellent performance in SERS tracing, the proposed SERS substrate shows exceptional ability in detecting and identifying phenol-soluble modulins and is considered to be a label-free approach that requires no adding markers/tags or antibodies. The proposed substrate expands the potential applications of SERS technology for rapid detection of bacterial toxins during clinical diagnoses and treatment.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1699
Author(s):  
Srijit Nair ◽  
Juan Gomez-Cruz ◽  
Gabriel Ascanio ◽  
Aristides Docoslis ◽  
Ribal Georges Sabat ◽  
...  

This article introduces a bioinspired, cicada wing-like surface-enhanced Raman scattering (SERS) substrate based on template-stripped crossed surface relief grating (TS-CSRG). The substrate is polarization-independent, has tunable nanofeatures and can be fabricated in a cleanroom-free environment via holographic exposure followed by template-stripping using a UV-curable resin. The bioinspired nanostructures in the substrate are strategically designed to minimize the reflection of light for wavelengths shorter than their periodicity, promoting enhanced plasmonic regions for the Raman excitation wavelength at 632.8 nm over a large area. The grating pitch that enables an effective SERS signal is studied using Rhodamine 6G, with enhancement factors of the order of 1 × 104. Water contact angle measurements reveal that the TS-CSRGs are equally hydrophobic to cicada wings, providing them with potential self-cleaning and bactericidal properties. Finite-difference time-domain simulations are used to validate the nanofabrication parameters and to further confirm the polarization-independent electromagnetic field enhancement of the nanostructures. As a real-world application, label-free detection of melamine up to 1 ppm, the maximum concentration of the contaminant in food permitted by the World Health Organization, is demonstrated. The new bioinspired functional TS-CSRG SERS substrate holds great potential as a large-area, label-free SERS-active substrate for medical and biochemical sensing applications.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1026
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
M. Selim Ünlü

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1872
Author(s):  
Holger Schulze ◽  
Harry Wilson ◽  
Ines Cara ◽  
Steven Carter ◽  
Edward N. Dyson ◽  
...  

Rapid point of care tests for bacterial infection diagnosis are of great importance to reduce the misuse of antibiotics and burden of antimicrobial resistance. Here, we have successfully combined a new class of non-biological binder molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for direct, label-free detection of Gram-positive bacteria making use of the specific coil-to-globule conformation change of the vancomycin-modified highly branched polymers immobilized on the surface of gold screen-printed electrodes upon binding to Gram-positive bacteria. Staphylococcus carnosus was detected after just 20 min incubation of the sample solution with the polymer-functionalized electrodes. The polymer conformation change was quantified with two simple 1 min EIS tests before and after incubation with the sample. Tests revealed a concentration dependent signal change within an OD600 range of Staphylococcus carnosus from 0.002 to 0.1 and a clear discrimination between Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. This exhibits a clear advancement in terms of simplified test complexity compared to existing bacteria detection tests. In addition, the polymer-functionalized electrodes showed good storage and operational stability.


Sign in / Sign up

Export Citation Format

Share Document