scholarly journals Comment on “Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry” [Appl. Phys. Lett. 105, 183104 (2014)]

2016 ◽  
Vol 108 (22) ◽  
pp. 226101 ◽  
Author(s):  
Daniil Marinov
2014 ◽  
Vol 105 (18) ◽  
pp. 183104 ◽  
Author(s):  
A. Felten ◽  
D. McManus ◽  
C. Rice ◽  
L. Nittler ◽  
J.-J. Pireaux ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
C. Smit ◽  
D.L. Williamson ◽  
M.C.M. van de Sanden ◽  
R.A.C.M.M. van Swaaij

AbstractExpanding thermal plasma CVD (ETP CVD) has been used to deposit thin microcrystalline silicon films. In this study we varied the position at which the silane is injected in the expanding hydrogen plasma: relatively far from the substrate and close to the plasma source, giving a long interaction time of the plasma with the silane, and close to the substrate, resulting in a short interaction time. The material structure is studied extensively. The crystalline fractions as obtained from Raman spectroscopy as well as from X-ray diffraction (XRD) vary from 0 to 67%. The average particle sizes vary from 6 to 17 nm as estimated from the (111) XRD peak using the Scherrer formula. Small angle X-ray scattering (SAXS) and flotation density measurements indicate void volume fractions of about 4 to 6%. When the samples are tilted the SAXS signal is lower than for the untilted case, indicating elongated objects parallel to the growth direction in the films. We show that the material properties are influenced by the position of silane injection in the reactor, indicating a change in the plasma chemistry.


2020 ◽  
Vol 29 (10) ◽  
pp. 105014
Author(s):  
P Viegas ◽  
L Vialetto ◽  
A J Wolf ◽  
F J J Peeters ◽  
P W C Groen ◽  
...  

1994 ◽  
Vol 336 ◽  
Author(s):  
U. Kroll ◽  
Y. Ziegler ◽  
J. Meier ◽  
H. Keppner ◽  
A. Shah

ABSTRACTWe performed plasma impedance measurements at room temperature for a hydrogen plasma using an impedance analyser. The plasma excitation frequency range spans from 40 to 70 MHz. Both the real and imaginary part of the impedance decrease monotonously with increasing frequency. These measurements are in agreement with prior experimental observations [1], that the required peak-to-peak voltage between the electrodes is reduced at higher excitation frequencies. Using a simple equivalent circuit for the plasma this effect can be mainly attributed to the increased sheath capacitance. Furthermore, by modelling the sheath with a simple parallel plate capacitor, its thickness could be estimated: it decreases from 2 MM at 40 MHz to about 1.4 MM at 70 MHz plasma excitation frequency. Finally, a possible link between the decreasing sheath thickness on the increase of deposition rate is discussed.


1998 ◽  
Vol 507 ◽  
Author(s):  
Vikram L. Dalal ◽  
Tim Maxson ◽  
Sohail Haroon

ABSTRACTWe report on the growth and properties of a-(Si,Ge):H films and p-i-n solar cell devices prepared using a remote, low pressure ECR plasma deposition technique. The films and devices were prepared using either He or H2 as the diluent gas. The plasma conditions were controlled so as to induce significant ion bombardment during growth. We find that there is a dramatic influence of plasma chemistry on the growth and properties of a-(Si,Ge):H films and devices. In particular, with hydrogen as the diluent gas, changing the pressure in the reactor dramatically changes both the Germanium incorporation in the film, and the electronic properties. Lower pressures lead to less Ge being incorporated, and higher mobility-lifetime product for holes for a given Tauc gap, as well as better p-i-n devices. In contrast, changing the pressure when He is the diluent gas does not produce such large changes. We speculate that the changes in device and film properties are due to the influence of ion bombardment on growth chemistry, and that both efficient energy and momentum transfer to the growing surface are necessary to achieve the best devices. The differences between He and hydrogen may simply be due to the fact that He plasma is much more energetic than a comparable hydrogen plasma, and there is more efficient momentum transfer when He is used as compared to when hydrogen is used. We have also produced very good single junction a-(Si,Ge) devices using the ECR technique.


1966 ◽  
Vol 24 ◽  
pp. 322-330
Author(s):  
A. Beer

The investigations which I should like to summarize in this paper concern recent photo-electric luminosity determinations of O and B stars. Their final aim has been the derivation of new stellar distances, and some insight into certain patterns of galactic structure.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Sign in / Sign up

Export Citation Format

Share Document