scholarly journals Proper determination of direct solar radiation in NWP and climate models

2017 ◽  
Author(s):  
Zhian Sun ◽  
Jiangnan Li ◽  
Yongjian He ◽  
Aixia Liu ◽  
Jiandong Li ◽  
...  
2015 ◽  
Vol 61 (1) ◽  
pp. 89-102 ◽  
Author(s):  
O. I. Kordun

AbstractThe paper considers method of determination of solar radiation amount falling on arbitrarily oriented surface of a structure. Provided method allows calculation of influence of structure’s geographical coordinates, spatial orientation of structure’s surface, day of year and time of day on received amount of solar radiation. The method is intended for determination of thermal stresses and deformations of sheet steel structures caused by action of direct solar radiation. Examples show usage of provided method.


2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking > north-south Earth’s axis tracking > north-south tilt tracking (β = 15°) > north-south tilt tracking (β = 45) > north-south horizontal tracking > east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Jesús García ◽  
Iván Portnoy ◽  
Ricardo Vasquez Padilla ◽  
Marco E. Sanjuan

Variation in direct solar radiation is one of the main disturbances that any solar system must handle to maintain efficiency at acceptable levels. As known, solar radiation profiles change due to earth's movements. Even though this change is not manipulable, its behavior is predictable. However, at ground level, direct solar radiation mainly varies due to the effect of clouds, which is a complex phenomenon not easily predictable. In this paper, dynamic solar radiation time series in a two-dimensional (2D) spatial domain are obtained using a biomimetic cloud-shading model. The model is tuned and compared against available measurement time series. The procedure uses an objective function based on statistical indexes that allow extracting the most important characteristics of an actual set of curves. Then, a multi-objective optimization algorithm finds the tuning parameters of the model that better fit data. The results showed that it is possible to obtain responses similar to real direct solar radiation transients using the biomimetic model, which is useful for other studies such as testing control strategies in solar thermal plants.


Sign in / Sign up

Export Citation Format

Share Document