One-dimensional electromagnetic band gap plasma structure formed by atmospheric pressure plasma inhomogeneities

2017 ◽  
Vol 122 (8) ◽  
pp. 083302 ◽  
Author(s):  
V. S. Babitski ◽  
Th. Callegari ◽  
L. V. Simonchik ◽  
J. Sokoloff ◽  
M. S. Usachonak
2011 ◽  
Vol 688 ◽  
pp. 186-190 ◽  
Author(s):  
Hao Long Chen ◽  
Zin Ching Liou ◽  
Shian Jang Lin

A convenient method for direct and large-area growth of one-dimensional (1-D) CuO and ZnO nanostructures on a conductive brass substrate has been developed. The ZnO and CuO nanostructures have been simultaneously induced and growth on a brass (70Cu-30Zn alloy) substrate by using an atmospheric-pressure plasma jet (APPJ) with pure oxygen as the reaction gas in an ambient environment. Various one-dimensional (1-D) nanostructures such as nano-particles, nanowires, nanobelts, nanocombs, and nanosheets have been in situ grown on the brass substrates under different plasma treatment times. The plasma power of 150W and scanning speed of sample stage 1 mm/sec with different treating times were used in plasma surface treatment processing. The nano-scaled ZnO and CuO formation and its structure were characterized by means of grazing-incidence X-ray diffraction, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The results showed that the nano-scaled CuO and ZnO growth process was as follows: nano-particles, nano-crystal clusters then nano-crystal columns with increasing plasma treatment times. The growth of nano-scaled oxide formed in sequence that CuO was first grew on the brass substrate then ZnO. The morphologies of nano-scaled ZnO resembled bulbs and long-legged tetrapods. However, the morphologies of nano-scaled CuO were likely bulbs and flake nanostructures. This approach could prepare CuO and ZnO nanostructures on a brass substrate without size limitations. The possible growth mechanisms and structure of nano-scaled CuO and ZnO are discussed in this paper. The simplicity of the preparation procedure and the potential technological of the product were be interested in this study.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 312 ◽  
Author(s):  
Robert Köhler ◽  
Gisela Ohms ◽  
Holger Militz ◽  
Wolfgang Viöl

In this study, bismuth oxide powder (Bi2O3) was deposited by an atmospheric pressure plasma jet onto borosilicate glass. The layer produced through this method is to be used as a photo catalyst in later applications. The deposited coating was analyzed by X-ray diffraction (XRD) to determine the crystal structure, and X-ray photoelectron spectroscopy (XPS) to analyze the chemical state. The results showed a change in crystal and chemical structure during the deposition process. The morphological properties of the layer were examined with scanning electron microscopy (SEM) and laser scanning microscopy (LSM). The band gap structure of the coating was investigated by UV-Vis spectroscopy. The layer produced by the plasma spraying process consisted of circular multi-phase bismuth oxide droplets (monoclinic Bi2O3 and tetragonal Bi2O2.33), showing a direct band gap of Eg = 2.72 eV, which allows their use as a photocatalyst.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 533 ◽  
Author(s):  
Robert Köhler ◽  
Dominik Siebert ◽  
Leif Kochanneck ◽  
Gisela Ohms ◽  
Wolfgang Viöl

The photocatalyst bismuth oxide, which is active under visual light, was deposited using an atmospheric pressure plasma jet (APPJ). Sixteen different samples were generated under different parameters of the APPJ to investigate their catalytic activity. The prepared samples were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), laser scanning microscopy (LSM), and UV–vis diffuse reflectance absorption spectroscopy. The measured data, such as average sample thickness, coverage ratio, phase fraction, chemical composition, band gap, and photocatalytic performance were used for comparing the samples. The XRD analysis showed that the deposition process produced a mixed phase of monocline Bi2O3 and tetragonal Bi2O2.33. Using the Rietveld refinement method, phase fractions could be determined and compared with the XPS data. The non-stoichiometric phases were influenced by the introduction of nitrogen to the surface as a result of the deposition process. The band gap calculated from the diffuse absorption spectroscopy shows that Bi2O2.33 with 2.78 eV had a higher band gap compared to the phases with a high proportion of Bi2O3 (2.64 eV). Furthermore, it was shown that the band gap was dependent on the thickness of the sample and oxygen vacancies or loss of oxygen in the surface. All coatings had degraded methyl orange (MO) under irradiation by xenon lamps.


PIERS Online ◽  
2010 ◽  
Vol 6 (7) ◽  
pp. 636-639
Author(s):  
Toshiyuki Nakamiya ◽  
Fumiaki Mitsugi ◽  
Shota Suyama ◽  
Tomoaki Ikegami ◽  
Yoshito Sonoda ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


2018 ◽  
Vol 677 (1) ◽  
pp. 135-142
Author(s):  
Dong Ha Kim ◽  
Choon-Sang Park ◽  
Eun Young Jung ◽  
Bhum Jae Shin ◽  
Jae Young Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document