scholarly journals Atmospheric Pressure Plasma Coating of Bismuth Oxide Circular Droplets

Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 312 ◽  
Author(s):  
Robert Köhler ◽  
Gisela Ohms ◽  
Holger Militz ◽  
Wolfgang Viöl

In this study, bismuth oxide powder (Bi2O3) was deposited by an atmospheric pressure plasma jet onto borosilicate glass. The layer produced through this method is to be used as a photo catalyst in later applications. The deposited coating was analyzed by X-ray diffraction (XRD) to determine the crystal structure, and X-ray photoelectron spectroscopy (XPS) to analyze the chemical state. The results showed a change in crystal and chemical structure during the deposition process. The morphological properties of the layer were examined with scanning electron microscopy (SEM) and laser scanning microscopy (LSM). The band gap structure of the coating was investigated by UV-Vis spectroscopy. The layer produced by the plasma spraying process consisted of circular multi-phase bismuth oxide droplets (monoclinic Bi2O3 and tetragonal Bi2O2.33), showing a direct band gap of Eg = 2.72 eV, which allows their use as a photocatalyst.

Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 533 ◽  
Author(s):  
Robert Köhler ◽  
Dominik Siebert ◽  
Leif Kochanneck ◽  
Gisela Ohms ◽  
Wolfgang Viöl

The photocatalyst bismuth oxide, which is active under visual light, was deposited using an atmospheric pressure plasma jet (APPJ). Sixteen different samples were generated under different parameters of the APPJ to investigate their catalytic activity. The prepared samples were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), laser scanning microscopy (LSM), and UV–vis diffuse reflectance absorption spectroscopy. The measured data, such as average sample thickness, coverage ratio, phase fraction, chemical composition, band gap, and photocatalytic performance were used for comparing the samples. The XRD analysis showed that the deposition process produced a mixed phase of monocline Bi2O3 and tetragonal Bi2O2.33. Using the Rietveld refinement method, phase fractions could be determined and compared with the XPS data. The non-stoichiometric phases were influenced by the introduction of nitrogen to the surface as a result of the deposition process. The band gap calculated from the diffuse absorption spectroscopy shows that Bi2O2.33 with 2.78 eV had a higher band gap compared to the phases with a high proportion of Bi2O3 (2.64 eV). Furthermore, it was shown that the band gap was dependent on the thickness of the sample and oxygen vacancies or loss of oxygen in the surface. All coatings had degraded methyl orange (MO) under irradiation by xenon lamps.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Suresh Gosavi ◽  
Rena Tabei ◽  
Nitish Roy ◽  
Sanjay S. Latthe ◽  
Y. M. Hunge ◽  
...  

Titanium dioxide (TiO2) has been widely used as a catalyst material in different applications such as photocatalysis, solar cells, supercapacitor, and hydrogen production, due to its better chemical stability, high redox potential, wide band gap, and eco-friendly nature. In this work TiO2 thin films have been deposited onto both glass and silicon substrates by the atmospheric pressure plasma jet (APPJ) technique. The structure and morphological properties of TiO2 thin films are studied using different characterization techniques like X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and field emission scanning electron microscopy. XRD study reveals the bronze-phase of TiO2. The XPS study shows the presence of Ti, O, C, and N elements. The FE-SEM study shows the substrate surface is well covered with a nearly round shaped grain of different size. The optical study shows that all the deposited TiO2 thin films exhibit strong absorption in the ultraviolet region. The oleic acid photocatalytic decomposition study demonstrates that the water contact angle decreased from 80.22 to 27.20° under ultraviolet illumination using a TiO2 photocatalyst.


Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 210 ◽  
Author(s):  
Rico Rutkowski ◽  
Georg Daeschlein ◽  
Thomas von Woedtke ◽  
Ralf Smeets ◽  
Martin Gosau ◽  
...  

Despite increasing knowledge gained based on multidisciplinary research, plasma medicine still raises various questions regarding specific effects as well as potential risks. With regard to significant statements about in vivo applicability that cannot be prognosticated exclusively based on in vitro data, there is still a deficit of clinical data. This study included a clinical follow-up of five probands who had participated five years previously in a study on the influence of cold atmospheric pressure plasma (CAP) on the wound healing of CO2 laser-induced skin lesions. The follow-up included a complex imaging diagnostic involving dermatoscopy, confocal laser scanning microscopy (CLSM) and hyperspectral imaging (HSI). Hyperspectral analysis showed no relevant microcirculatory differences between plasma-treated and non-plasma-treated areas. In summary of all the findings, no malignant changes, inflammatory reactions or pathological changes in cell architecture could be detected in the plasma-treated areas. These unique in vivo long-term data contribute to a further increase in knowledge about important safety aspects in regenerative plasma medicine. However, to confirm these findings and secure indication-specific dose recommendations, further clinical studies are required.


2017 ◽  
Vol 122 (8) ◽  
pp. 083302 ◽  
Author(s):  
V. S. Babitski ◽  
Th. Callegari ◽  
L. V. Simonchik ◽  
J. Sokoloff ◽  
M. S. Usachonak

2011 ◽  
Vol 331 ◽  
pp. 718-721 ◽  
Author(s):  
Xu Ming Li ◽  
Yi Ping Qiu

The influence of He/O2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyarylate from PET fabrics was studied in present paper. Scanning electron microscopy (SEM) analysis showed an increased surface roughness after the plasma treatment. And SEM results also showed that the fiber surfaces were as clean as unsized fibers surfaces after 35s treatment followed by NaHCO3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65s plasma treatment followed by a 5min NaHCO3 desizing.


2021 ◽  
Vol 22 (17) ◽  
pp. 9256
Author(s):  
Agata Motyka-Pomagruk ◽  
Anna Dzimitrowicz ◽  
Jakub Orlowski ◽  
Weronika Babinska ◽  
Dominik Terefinko ◽  
...  

Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3–4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods.


2021 ◽  
Vol 7 (4) ◽  
pp. 71
Author(s):  
Sri Hari Bharath Vinoth Kumar ◽  
Josefa Ibaceta-Jaña ◽  
Natalia Maticuic ◽  
Krystian Kowiorski ◽  
Matthias Zelt ◽  
...  

Atmospheric pressure plasma jets (APPJ) are widely used in industry for surface cleaning and chemical modification. In the recent past, they have gained more scientific attention especially in the processing of carbon nanomaterials. In this work, a novel power generation technique was applied to realize the stable discharge in N2 (10 vol.% H2) forming gas in ambient conditions. This APPJ was used to reduce solution-processed graphene oxide (GO) thin films and the result was compared with an established and optimized reduction process in a low–pressure capacitively coupled (CCP) radiofrequency (RF) hydrogen (H2) plasma. The reduced GO (rGO) films were investigated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effective deoxygenation of GO was observed after a quick 2 s treatment by AAPJ. Further deoxygenation at longer exposure times was found to proceed with the expense of GO–structure integrity. By adding acetylene gas into the same APPJ, carbon nanomaterials on various substrates were synthesized. The carbon materials were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analyses. Fullerene-like particles and graphitic carbon with short carbon nanotubes were detected on Si and Ag surfaces, respectively. We demonstrate that the APPJ tool has obvious potential for the versatile processing of carbon nanomaterials.


PIERS Online ◽  
2010 ◽  
Vol 6 (7) ◽  
pp. 636-639
Author(s):  
Toshiyuki Nakamiya ◽  
Fumiaki Mitsugi ◽  
Shota Suyama ◽  
Tomoaki Ikegami ◽  
Yoshito Sonoda ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


Sign in / Sign up

Export Citation Format

Share Document