Gas flow through the piston ring pack

2018 ◽  
Author(s):  
Petr Veigend ◽  
Gabriela Necasov ◽  
Peter Raffai ◽  
Vclav Åtek ◽  
Jir Kunovsk
2017 ◽  
Vol 170 (3) ◽  
pp. 164-170
Author(s):  
Andrzej WOLFF

In the paper a comprehensive model of a piston ring pack motion on an oil film has been presented. The local thickness of the oil film can be compared to height of the combined surface roughness of a cylinder liner and piston rings. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng and Greenwood, Tripp have been combined and used in this paper. In addition a model of gas flow through the labyrinth seal of piston rings has been developed. The main parts of the model and software have been experimentally verified abroad by the author at the marine engine designing centre. For the selected two-stroke marine engine, the influence of the number of piston rings used and the type of the top ring lock (straight or overlapped) on blowby to piston underside and on friction losses of the piston-ring-cylinder (PRC) system have been investigated. The developed model and software can be useful for optimization of the PRC system design


Author(s):  
F-M Meng ◽  
J-X Wang ◽  
K Xiao

The influences of particles in the gas flow passage of a piston ring pack on the tribolo-gical performances of rings were numerically investigated based on a modified blow-by equation incorporating the particle effect and associated equations. Meanwhile, the particle effect on the blow-by of rings, inter-ring gas pressure, friction force, stresses, pressure, and deformation of the ring was solved by the Runge—Kutta method and the fast Fourier transform (FFT) technique. The numerical results show that obvious changes in the blow-by of the ring and the inter-ring gas pressure can occur if the particle effect is considered. The effect depends on the combined effect of the area, position, and number of particles. Meanwhile, the friction force of the top face of the ring, and the maximum Von Mises stress of the inner ring surface, contact pressure, deformation, and maximum shear stress of the contacting surface of the ring can obviously increase because of the particle effect.


Author(s):  
Sang Myung Chun

The oil consumption and blow-by gas through piston-cylinder-ring crevices have to be minimized. Meanwhile, the friction losses in the piston ring pack need to be reduced in order to improve fuel economy and engine performance. In these two aspects, study on the optimized design of the piston ring pack has to be carried out. The amounts of oil consumption and blow-by gas are important factors to decide whether an engine is operating under good conditions or not during engine development and engine life cycle. The purpose of this study is to develop a computer program predicting engine oil consumption and blow-by gas by calculating the amount of oil flowing into the combustion chamber and gas flow down to the crankcase through the piston ring pack. Using this program, the condition of an engine can be predicted in advance.


Author(s):  
Liang Liu ◽  
Tian Tian

A three-dimensional (3D) model for piston ring-pack dynamics and blow-by gas flow was developed to enable more in-depth analyses of the ring-pack performance. This model predicts the 3D dynamic behavior of compression rings and twin-land oil control ring due to the ring’s non-axisymmetric properties, bore distortion and piston secondary motion. Finite element beam theory is used for ring structure calculation. Gas flows along the axial and circumferential directions of the power cylinder system are resolved simultaneously with the ring dynamics. The model was applied to a heavy-duty diesel engine. Particular emphasis was placed on the dynamics of keystone type of top ring, and the stability of the second ring with a twist chamfer and twin-land oil control ring under the influence of piston secondary motion. The variations of the gas pressure and ring dynamic behavior along the circumference are discussed.


2009 ◽  
Vol 137 (2) ◽  
pp. 128-141
Author(s):  
Andrzej WOLFF

In the paper a model of a piston ring pack motion on an oil film has been analysed. The local oil film thickness can be compared to height of the combined roughness of mating surfaces of piston rings and cylinder liner. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng [6, 7] and Greenwood, Tripp [3] have been combined [12] and used in this paper. A model of a gas flow through the labyrinth seal of piston rings has been developed [13, 15]. In addition models of ring twist effects and axial ring motion in piston grooves have been applied [14, 15]. In contrast to the previous papers of the author, an experimental verification of the main parts of developed mathematical model and software has been presented. A relatively good compatibility between the experimental measurements and calculated results has been achieved. In addition this study presents the simulation results for an automobile internal combustion engine


2020 ◽  
Vol 5 (3) ◽  
pp. 304-313
Author(s):  
Erjon Selmani ◽  
Arian Bisha

The combustion chamber is ought to be perfectly sealed, however, part of the air and fuel mixture can escape from it. Among the several losses there is the gas flow from the inter-ring crevices, which is always present. This leakage is known as blow-by, and affects efficiency, correct lubrication and emissions. The amount of leakage is dependent on many factors, and among the most important are the engine speed and load, which are able to affect the system through the forces applied on it. The aim of this paper was to understand in a more detailed way how the engine speed and load could affect the sealing efficiency of a ring-pack. For this purpose, a complete range of speeds and loads were used in the simulations. The equations of the ring motions and gas dynamics has been implemented and solved in ©Ricardo RINGPAK solver. The results showed that inertia and inter-ring gas pressures drives the sealing behavior of the rings. The blow-by trend showed to decrease with the speed and increase with the load, exception made for the idle condition where the values were different to the other cases, especially at higher speeds. Among the two parameters, the engine speed resulted to affect more significantly the blow-by trend.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Wen-Bin Chen ◽  
De-Liang Liu ◽  
Jiu-Jun Xu ◽  
Ruo-Xuan Huang ◽  
Ze-Zhong Chen ◽  
...  

The piston ring pack and the ports on the cylinder linear wall have a great impact on the performance of the two-stroke opposed-piston engine. In this work, a piston ring pack model for this type of engine was generated to incorporate the exhaust ports. The effect of the exhaust ports was considered by modifying the existing friction force equation and the gas flow continuity equations. The developed model was implemented in an opposed-piston opposed-cylinder engine (a specific type of opposed-piston engine) to investigate the backpressure and the associated axial movement of all the rings of the piston ring pack under various working conditions. The results show that the gas pressure in all the regions of the piston ring pack and the axial movement of the rings are strongly affected by the exhaust ports. The gas pressure in some regions of the ring pack declines with the increase of the engine speed, while the effect of the combustion pressure (CP) on the axial movement of the ring pack can be neglected.


2019 ◽  
Vol 13 (3) ◽  
pp. 5513-5527
Author(s):  
J. W. Tee ◽  
S. H. Hamdan ◽  
W. W. F. Chong

Fundamental understanding of piston ring-pack lubrication is essential in reducing engine friction. This is because a substantial portion of engine frictional losses come from piston-ring assembly. Hence, this study investigates the tribological impact of different piston ring profiles towards engine in-cylinder friction. Mathematical models are derived from Reynolds equation by using Reynolds’ boundary conditions to generate the contact pressure distribution along the complete piston ring-pack/liner conjunction. The predicted minimum film thickness is then used to predict the friction generated between the piston ring-pack and the engine cylinder liner. The engine in-cylinder friction is predicted using Greenwood and Williamson’s rough surface contact model. The model considers both the boundary friction and the viscous friction components. These mathematical models are integrated to simulate the total engine in-cylinder friction originating from the studied piston ring-pack for a complete engine cycle. The predicted minimum film thickness and frictional properties from the current models are shown to correlate reasonably with the published data. Hence, the proposed mathematical approach prepares a simplistic platform in predicting frictional losses of piston ring-pack/liner conjunction, allowing for an improved fundamental understanding of the parasitic losses in an internal combustion engine.


Sign in / Sign up

Export Citation Format

Share Document