Near-junction heat spreaders for hot spot thermal management of high power density electronic devices

2019 ◽  
Vol 126 (16) ◽  
pp. 165113
Author(s):  
R. Soleimanzadeh ◽  
R. A. Khadar ◽  
M. Naamoun ◽  
R. van Erp ◽  
E. Matioli
Author(s):  
Stephen M. Walsh ◽  
Bernard A. Malouin ◽  
Eric A. Browne ◽  
Kevin R. Bagnall ◽  
Evelyn N. Wang ◽  
...  

2007 ◽  
Vol 6 (2) ◽  
pp. 34 ◽  
Author(s):  
G. Ribatski ◽  
L. Cabezas-Gómez ◽  
H. A. Navarro ◽  
J. M. Saíz-Jabardo

In this paper, the importance of the development of new high power density thermal management systems for electronic devices is assessed. It is described the new heat sink technologies under development to be used in the cooling of microprocessors. The main difficulties to be overcome before the spreading of one specific heat sink configuration are identified. At the end, it is concluded that a heat sink based on flow boiling in micro-scale channels is the most promising approach.


Author(s):  
Chan-Yen Chou ◽  
Chung-Jung Wu ◽  
Hsiu-Ping Wei ◽  
Ming-Chih Yew ◽  
Chien-Chia Chiu ◽  
...  

In this paper, a thermal enhanced design for a high power density system in package (SiP) is proposed to resolve the challenge faced by the packaging research community in eliminating the hot spot and reducing the junction temperature in a high operation temperature. The SiP structure includes seven sub-chips which are attached to the chip carrier. The dissipated heat is conducted to the metal slug by thermal vias, while some heat is conducted to the pads by metal traces. Finally, the whole module is connected to the test board by solder paste material. In the thermal enhanced design, a highly conductive material such as solder paste is applied to make an attachment between the chip carrier and the highest power density chip (the power amplifier chip). Besides, some thermal vias are constructed to conduct the dissipated heat from the chip carrier to the metal slug. The new structure greatly improves the thermal performance of the SiP structure. Moreover, the hot spot on the chip carrier is also eliminated in this thermal enhanced SiP structure.


2021 ◽  
Vol 79 (6) ◽  
pp. 631-640
Author(s):  
Takaaki Tsunoda ◽  
Takeo Tsukamoto ◽  
Yoichi Ando ◽  
Yasuhiro Hamamoto ◽  
Yoichi Ikarashi ◽  
...  

Electronic devices such as medical instruments implanted in the human body and electronic control units installed in automobiles have a large impact on human life. The electronic circuits in these devices require highly reliable operation. Radiographic testing has recently been in strong demand as a nondestructive way to help ensure high reliability. Companies that use high-density micrometer-scale circuits or lithium-ion batteries require high speed and high magnification inspection of all parts. The authors have developed a new X-ray source supporting these requirements. The X-ray source has a sealed tube with a transmissive target on a diamond window that offers advantages over X-ray sources having a sealed tube with a reflective target. The X-ray source provides high-power-density X-ray with no anode degradation and a longer shelf life. In this paper, the authors will summarize X-ray source classification relevant to electronic device inspection and will detail X-ray source performance requirements and challenges. The paper will also elaborate on technologies employed in the X-ray source including tube design implementations for high-power-density X-ray, high resolution, and high magnification simultaneously; reduced system downtime for automated X-ray inspection; and reduced dosages utilizing quick X-ray on-and-off emission control for protection of sensitive electronic devices.


2017 ◽  
Author(s):  
Nenad Miljkovic ◽  
Thomas Foulkes ◽  
Junho Oh ◽  
Patrick Birbarah ◽  
Robert Pilawa-Podgurski ◽  
...  

Author(s):  
Tanya Liu ◽  
Farzad Houshmand ◽  
Catherine Gorle ◽  
Sebastian Scholl ◽  
Hyoungsoon Lee ◽  
...  

Advances in manufacturing techniques are inspiring the design of novel integrated microscale thermal cooling devices seeking to push the limits of current thermal management solutions in high heat flux applications. These advanced cooling technologies can be used to improve the performance of high power density electronics such as GaN-based RF power amplifiers. However, their optimal design requires careful analysis of the combined effects of conduction and convection. Many numerical simulations and optimization studies have been performed for single cell models of microchannel heat sinks, but these simulations do not provide insight into the flow and heat transfer through the entire device. This study therefore presents the results of conjugate heat transfer CFD simulations for a complex copper monolithic heat sink integrated with a 100 micron thick, 5 mm by 1 mm high power density GaN-SiC chip. The computational model (13 million cells) represents both the chip and the heat sink, which consists of multiple inlets and outlets for fluid entry and exit, delivery and collection manifold systems, and an array of fins that form rectangular microchannels. Total chip powers of up to 150 W at the GaN gates were considered, and a quarter of the device was modeled for total inlet mass flow rates of 1.44 g/s and 1.8 g/s (0.36 g/s and 0.45 g/s for the quarter device), corresponding to laminar flow at Reynolds numbers between 19.5 and 119.3. It was observed that the mass flow rates through individual microchannels in the device vary by up to 45%, depending on the inlet/outlet locations and pressure drop in the manifolds. The results demonstrate that full device simulations provide valuable insight into the multiple parameters that affect cooling performance.


Sign in / Sign up

Export Citation Format

Share Document