High coupling and high velocity surface acoustic waves using ac‐axis oriented ZnO film on translucent Al2O3ceramics

1983 ◽  
Vol 43 (1) ◽  
pp. 51-53 ◽  
Author(s):  
Fumio Takeda ◽  
Tadashi Shiosaki ◽  
Akira Kawabata
Author(s):  
Masashi Suzuki ◽  
Shoji Kakio

Abstract Piezoelectricity of YbAlN films has recently been shown to be almost as high as that of ScAlN films. YbAlN film surface acoustic wave (SAW) resonators are expected to have a high coupling factor. We theoretically investigated the propagation characteristics of first-mode Rayleigh SAWs (RSAWs) on Yb0.33Al0.67N film/high-velocity Si, sapphire, AlN, SiC, BN, and diamond substrates. The first-mode RSAWs on the YbAlN layered structures had high coupling factors, higher than those on ScAlN layered structures. An enhancement of the effective coupling factor of the first mode RSAWs was observed in polarity inverted YbAlN film/BN or diamond substrate structures.


2000 ◽  
Vol 33 (4) ◽  
pp. 1019-1022 ◽  
Author(s):  
R. Tucoulou ◽  
R. Pascal ◽  
M. Brunel ◽  
O. Mathon ◽  
D. V. Roshchupkin ◽  
...  

High-resolution X-ray diffraction measurements were carried out on ZnO/Si devices under surface acoustic wave excitation and revealed some very clear satellite diffraction peaks that are obtained from the sinusoidal modulation of the near-surface region. This experiment shows that the propagation of a Rayleigh surface acoustic wave in a perfect crystal acts as a dynamical diffraction grating. The variation of the acoustic velocity has been followed across the crystal surface from the acoustic source region (beneath the ZnO film) to the far field region (not covered by the ZnO film).


2017 ◽  
Vol 56 (7S1) ◽  
pp. 07JD13 ◽  
Author(s):  
Masashi Gomi ◽  
Takuya Kataoka ◽  
Junki Hayashi ◽  
Shoji Kakio

2010 ◽  
Vol 67 ◽  
pp. 49-58 ◽  
Author(s):  
Jack K. Luo ◽  
Y.Q. Fu ◽  
Greg Ashley ◽  
Williams I. Milne

Lab-on-a-chip (LOC) is one of the most important microsystems with promising applications in microanalysis, drug development and diagnosis, etc. We have been developing a LOC biodetection system using acoustic wave as a single actuation mechanism for both microfluidics and biosensing using low cost piezoelectric ZnO film. Surface acoustic waves (SAW) coupled into the liquid will induce acoustic streaming, or move the droplet on the surface. These have been utilized to make SAW-based micropumps and micromixers which are simple in structure, easy to fabricate, low cost, reliable and efficient. SAW devices and thin film bulk acoustic resonators (FBAR) have been fabricated on nanocrystalline ZnO thin films deposited using sputtering on Si substrates. A streaming velocity up to ~5cm/s within a microdroplet and a droplet moving speed of ~1cm/s have been achieved. SAW based droplet ejection and vaporization have also been realized. SAW devices and FBARs have been used to detect antibody/antigen and rabbit/goat immunoglobulin type G molecules, showing their high sensitivity. The results have demonstrated the feasibility of using a single actuation mechanism for the LOC.


2000 ◽  
Vol 10 (04) ◽  
pp. 1069-1109 ◽  
Author(s):  
MAURICIO PEREIRA DA CUNHA

This article discusses the characteristics of pseudo surface waves (PSAWs) and high velocity pseudo surface waves (HVPSAWs). The fundamental properties of these waves, the matrix method formulation, the different solution types due to crystal symmetry, early experiments on HVPSAWs, and practical applications of pseudo surface acoustic waves serve as an introduction. The solutions to the pseudo modes are discussed by analyzing the boundary condition function for several orientations. The relation between the radiating partial modes and the sagittal plane bulk slowness reveals new characteristics of the different symmetry types of HVPSAW, and helps classify and understand the pseudo modes. The acoustoelectric Poynting vector is used along different crystal symmetry orientations to reveal and discuss the pseudo SAW characteristics: penetration depth, declination of the power vector, and an estimation of power flow angle. Experimental data and numerical solutions of HVPSAW and PSAW along selected planes and orientations are discussed. This article concludes with a brief analysis of layered structures on different symmetry type substrates and a discussion of the layered pseudo surface wave properties.


Sign in / Sign up

Export Citation Format

Share Document