Microhardness study of binary blend of polyvinyl formal and polyvinyledene fluoride

2020 ◽  
Author(s):  
Kiran Dawande ◽  
Swarnim Patel ◽  
Rakesh Bajpai ◽  
J. M. Keller
Author(s):  
Yiqin Zhang ◽  
Honglei Mu ◽  
Haiyan Gao ◽  
Hangjun Chen ◽  
Weijie Wu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2372
Author(s):  
Yesenia Sánchez-Cardona ◽  
Claudia E. Echeverri-Cuartas ◽  
Marta E. Londoño López ◽  
Natalia Moreno-Castellanos

Chitosan scaffolds based on blending polymers are a common strategy used in tissue engineering. The objective of this study was evaluation the properties of scaffolds based on a ternary blend of chitosan (Chi), gelatin (Ge), and polyvinyl alcohol (PVA) (Chi/Ge/PVA), which were prepared by cycles of freeze-thawing and freeze-drying. It then was used for three-dimensional BRIN-BD11 beta-cells culturing. Weight ratios of Chi/Ge/PVA (1:1:1, 2:2:1, 2:3:1, and 3:2:1) were proposed and porosity, pore size, degradation, swelling rate, compressive strength, and cell viability analyzed. All ternary blend scaffolds structures are highly porous (with a porosity higher than 80%) and interconnected. The pore size distribution varied from 0.6 to 265 μm. Ternary blends scaffolds had controllable degradation rates compared to binary blend scaffolds, and an improved swelling capacity of the samples with increasing chitosan concentration was found. An increase in Young’s modulus and compressive strength was observed with increasing gelatin concentration. The highest compressive strength reached 101.6 Pa. The MTT assay showed that the ternary blends scaffolds P3 and P4 supported cell viability better than the binary blend scaffold. Therefore, these results illustrated that ternary blends scaffolds P3 and P4 could provide a better environment for BRIN-BD11 cell proliferation.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2944
Author(s):  
Ernesto Villar-Cociña ◽  
Moisés Frías ◽  
Holmer Savastano ◽  
Loic Rodier ◽  
María Isabel Sánchez de Rojas ◽  
...  

In this research work, the quantitative characterization of a binary blend comprised of two pozzolans (sugar cane straw (SCSA)–sugar cane bagasse ashes (SCBA), bamboo leaf ash (BLAsh)–SCBA and paper sludge (PS)–fly ash (FA)) taking into account the calculated values of the kinetic parameters of the reaction in the pozzolan/calcium hydroxide system is shown. The paper shows the most significant and important results obtained by the authors in the quantitative assessment (calculation of kinetic parameters) of the pozzolanic reaction of different mixtures of pozzolanic materials that are residues from agriculture or industrial processes. This allows a direct and rigorous comparison of the pozzolanic activity of the binary combinations of materials. The values of the kinetic parameters (reaction rate constant or activation free energy) constitute a very precise quantitative index of the pozzolanic activity of the binary combinations of materials, which is very useful for its employment in the elaboration of ternary cements. This paper shows that the binary blends 1SCBA60Blash40, 1SCBA50Blash50, 1SCBA70Blash30 have a very high pozzolanic reactivity followed by PSLSFA, 2SCBA50SCSA50, PSISFA and SCWI.


2014 ◽  
Vol 52 (25-27) ◽  
pp. 5092-5101 ◽  
Author(s):  
Xiao-rong Meng ◽  
Hai-zhen Zhang ◽  
Lei Wang ◽  
Xu-dong Wang ◽  
Dan-xi Huang
Keyword(s):  

1989 ◽  
Vol 22 (3) ◽  
pp. 1334-1345 ◽  
Author(s):  
Julia A. Kornfield ◽  
Gerald G. Fuller ◽  
Dale S. Pearson

2013 ◽  
Vol 844 ◽  
pp. 53-56
Author(s):  
Saravalee Saengthaveep ◽  
Sadhan C. Jana ◽  
Rathanawan Magaraphan

To produce a tough material for application demanding high impact resistance and low moisture absorption, melt blending of Nylon12 (Polyamide 12, PA12) and natural rubber (NR) was carried out in a brabender plasticorder at 210 °C with rotor speed of 70 rpm in the presence of polystyrene/maleated natural rubber (PS/MNR) blend as a compatibilizer. The effect of compatibilizer content (1, 3, 5, 7 and 10 phr) on phase morphology, thermal, and mechanical properties of [Nylon12/NR]/[PS/MNR] blends was investigated by using SEM, DSC, and Izod impact tester, respectively. The result revealed that PS/MNR blend improved the compatibility of Nylon12/NR blends efficiently due to the presence of amide linkage at the interfaces from the reaction between the reactive groups of MNR and the NH2 end groups of Nylon12 during mixing. A fine phase morphology (good dispersion and small dispersed phase size of NR domains in Nylon12 matrix) of [Nylon12/NR]/[PS/MNR] blends was observed at the optimum compatibilizer content of 7 phr, relating to the improvement of mechanical property. The impact energy of [Nylon12/NR]/[PS/MNR] blends was 503 J/m higher than that of neat Nylon12 (115 J/m) and Nylon12/NR binary blend (241 J/m) due to the toughening effect of rubber and proper morphology. The melting temperature of all blends did not change obviously from thermal analysis. However, the presence of rubber particle obstructed the crystallization of Nylon12 phase, leading to the decreasing of %crystallinity from 93% to around 70%.


2021 ◽  
Author(s):  
Mohammad Anwar ◽  
Mohammad G. Rasul ◽  
Nanjappa Ashwath ◽  
Muhammad M. K. Bhuiya
Keyword(s):  
Seed Oil ◽  

Sign in / Sign up

Export Citation Format

Share Document