Influence of waste glass powder and hybrid fibers on high strength concrete

2020 ◽  
Author(s):  
G. Loganathan ◽  
A. Sumathi ◽  
K. Saravana Raja Mohan
Author(s):  
Byung-Chul Kim ◽  
Tae-Gweon Cha ◽  
Pan-Ki Jang ◽  
Chan-Woo Kim ◽  
Il-Young Jang

2018 ◽  
Vol 7 (4) ◽  
pp. 236
Author(s):  
James H. Haido ◽  
Youkhanna Z. Dinkha ◽  
Badorul H. Abu-Bakar

Manufactured reactive powders, as a silica fume, are usually used in production of high strength concrete with for retrofitting purposes of concrete structures. The efficiency of inert waste glass powder in hybrid concrete fabrication has not been widely investigated, thus further studies are essentially considered in this area. In the present study, hybrid concrete prisms with size of 10x10x30 cm have been made with old ordinary concrete (OC) and new high strength concrete (HSC). High strength of new concrete part of these prisms is achieved via using of waste glass powder, silica fume and mixture of them. The roughness of interfacial surface between old and new parts of hybrid concrete is improved in various manners with utilizing sand blast, holes and grooves. Performance of these elements has been measured in terms of slant shear strength and mode of failure. The results have been shown that there is a relatively similar strength with using retrofitted concrete made with the used powder which includes silica fume, glass powders, and their mixture, the mixture of both powders, namely, silica fume and waste glass powders is regarded a best choice in the present stud. It is demonstrated also that the grooved interface between old and new concretes induces proper strength equivalent to 89% of control concrete prisms strength.


2017 ◽  
Vol 28 (1) ◽  
pp. 215-222 ◽  
Author(s):  
Mostafa Vafaei ◽  
Ali Allahverdi

2021 ◽  
Vol 11 (1) ◽  
pp. 396
Author(s):  
Robert Jurczak ◽  
Filip Szmatuła

This article presents the results of research on the possibility of replacing fly ash with recycled waste glass in lower-strength concrete mixes. The results of testing concrete mixes containing either waste-glass powder or fly ash are presented in the article. A standard C12/15 concrete mix was chosen for the tests based on its common use for producing concrete for footings to support road kerbs and gutters along national roads in the Polish province of West Pomerania. In the first step of the testing procedure, reference mixes were prepared with 22.5% and 45% fly ash in relation to the content of cement. In the next step, mixes were prepared based on the same specification, except that glass powder was added in place of fly ash. The samples were then tested to determine the influence of waste-glass powder on the main properties of the prepared concrete mixes and on the performance of the concrete when hardened. All the samples were tested for 7 and 28-day compressive strength, water absorption, and freeze-thaw resistance in water. Next, the performance parameters of the samples containing waste-glass powder were compared to the reference mixes containing an equal amount of fly ash. The test results and their analysis allow us to conclude that mixes containing glass powder are not only equal to mixes containing fly ash, but even outperform them by a wide margin in terms of durability.


2014 ◽  
Vol 629-630 ◽  
pp. 284-290 ◽  
Author(s):  
Xu Jing Niu ◽  
Qing Xin Zhao ◽  
Ying Nie

After being subjected to different elevated temperatures, ranging between 200 °C and 800 °C, the flexural strength, matrix mass loss rate and water absorption of polypropylene (PP) macro-fiber reinforced high strength concrete (HSC) were investigated. Moreover, the internal damage of concrete was analyzed by the ultrasonic non-destructive testing technology. The results indicate that PP macro-fiber in HSC has an adverse effect on flexural strength, while the synergistic effect of hybrid fibers (PP micro-fiber plus PP macro-fiber) can minimize this effect. Compared with PP micro-fiber, PP macro-fiber is more effective in increasing the matrix mass loss rate and water absorption of HSC. However, if the dosage of PP macro-fiber is too high, the pressure relief channels formed by fibers melt will be too coarse, and the total porosity of HSC will be increased significantly. Finally, a mathematical model relating the damage degree to temperature was established based on the non-linear fitting of the experimental data.


Sign in / Sign up

Export Citation Format

Share Document